
PLAN 9 DESKTOP GUIDE

INDEX

• What is Plan 9?

• Limitations and Workarounds

◦ Connecting to Other Systems

▪ VNC

▪ RDP

▪ SSH

▪ 9P

▪ Other methods

◦ Porting Applications

◦ Emulating other Operating Systems

◦ Virtualizing other Operating Systems

• Basics

◦ Window Management

◦ Copy Pasting

◦ Essential Programs

◦ Manipulating Text in the Terminal

◦ Acme - The Do It All Application

◦ Multiple Workspaces

◦ Tiling Windows

◦ Plumbing

• System Administration

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#intro
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#intro
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#intro
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#intro
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#intro
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#limitations
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#limitations
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#limitations
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#limitations
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#limitations
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#connecting
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#connecting
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#connecting
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#connecting
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#connecting
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#vnc
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#vnc
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#vnc
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#vnc
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#vnc
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#rdp
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#rdp
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#rdp
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#rdp
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#rdp
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#ssh
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#ssh
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#ssh
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#ssh
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#ssh
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#9p
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#9p
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#9p
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#9p
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#9p
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#other_methods
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#other_methods
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#other_methods
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#other_methods
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#other_methods
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#porting
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#porting
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#porting
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#porting
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#porting
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#emulation
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#emulation
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#emulation
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#emulation
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#emulation
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#virtualizing
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#virtualizing
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#virtualizing
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#virtualizing
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#virtualizing
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#basics
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#basics
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#basics
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#basics
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#basics
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#rio
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#rio
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#rio
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#rio
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#rio
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#copy
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#copy
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#copy
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#copy
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#copy
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#programs
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#programs
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#programs
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#programs
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#programs
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#text
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#text
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#text
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#text
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#text
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#acme
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#acme
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#acme
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#acme
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#acme
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#workspaces
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#workspaces
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#workspaces
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#workspaces
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#workspaces
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#tiling
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#tiling
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#tiling
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#tiling
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#tiling
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#plumbing
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#plumbing
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#plumbing
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#plumbing
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#plumbing
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin

◦ Basic System Administration

◦ Battery Monitoring

◦ Configuring Startup and Shutdown

◦ Wallpapers, themes, etc...

◦ Internationalization

◦ User Management and Security

◦ Disk Management

◦ Backups

◦ Package Management

◦ File Management

◦ Tips for UNIX Sysadmins

◦ Quick CPU+AUTH+Qemu+Drawterm HOWTO

▪ 9front

▪ 9legacy

▪ CPU+Rio desktop

▪ CPU+PXE terminals

• Automation

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_basics
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_basics
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_basics
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_basics
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_basics
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_battery
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_battery
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_battery
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_battery
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_battery
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_init
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_init
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_init
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_init
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_init
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_rio
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_rio
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_rio
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_rio
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_rio
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_language
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_language
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_language
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_language
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_language
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_users
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_users
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_users
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_users
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_users
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_disks
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_disks
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_disks
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_disks
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_disks
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_backups
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_backups
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_backups
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_backups
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_backups
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_software
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_software
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_software
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_software
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_software
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_filemng
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_filemng
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_filemng
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_filemng
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_filemng
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_unix
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_unix
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_unix
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_unix
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_unix
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_cpu
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_cpu
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_cpu
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_cpu
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_cpu
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_cpu_9front
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_cpu_9front
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_cpu_9front
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_cpu_9front
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_cpu_9front
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_cpu_9legacy
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_cpu_9legacy
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_cpu_9legacy
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_cpu_9legacy
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_cpu_9legacy
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_cpu_desktop
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_cpu_desktop
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_cpu_desktop
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_cpu_desktop
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_cpu_desktop
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_cpu_terminals
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_cpu_terminals
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_cpu_terminals
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_cpu_terminals
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_cpu_terminals
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#automation
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#automation
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#automation
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#automation
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#automation

◦ Shell Scripting

◦ Rio Scripting

▪ Scrambling and Unscrambling a Rio Screen

▪ max - Maximizing Windows

▪ ws - Multiple Workspaces

▪ tile - Tiling Window Manager

◦ Acme Scripting

▪ Coffee - Chill ASCII Animations

▪ Slides - Acme Presentation Show

▪ Chat - Simple Peer to Peer Chatting

▪ Play - Music Playlist in Acme

◦ Web Scripting

▪ 9front Web Scripts

• Development

◦ Version Control

◦ Files and Namespaces

• The Web

◦ Wireless Network

◦ Browsing The Web

◦ Downloading

◦ Email

◦ Chatting

◦ Running a Web Server

• Multimedia

◦ Audio

◦ Video

▪ Youtube

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#rc
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#rc
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#rc
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#rc
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#rc
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#rio_scripting
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#rio_scripting
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#rio_scripting
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#rio_scripting
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#rio_scripting
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#script_scramble
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#script_scramble
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#script_scramble
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#script_scramble
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#script_scramble
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#script_max
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#script_max
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#script_max
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#script_max
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#script_max
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#script_workspace
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#script_workspace
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#script_workspace
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#script_workspace
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#script_workspace
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#script_tiling
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#script_tiling
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#script_tiling
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#script_tiling
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#script_tiling
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#acme_scripting
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#acme_scripting
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#acme_scripting
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#acme_scripting
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#acme_scripting
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#acme_coffee
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#acme_coffee
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#acme_coffee
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#acme_coffee
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#acme_coffee
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#acme_slides
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#acme_slides
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#acme_slides
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#acme_slides
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#acme_slides
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#acme_chat
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#acme_chat
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#acme_chat
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#acme_chat
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#acme_chat
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#acme_play
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#acme_play
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#acme_play
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#acme_play
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#acme_play
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#web_scripting
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#web_scripting
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#web_scripting
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#web_scripting
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#web_scripting
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#9front_web_scripts
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#9front_web_scripts
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#9front_web_scripts
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#9front_web_scripts
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#9front_web_scripts
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#development
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#development
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#development
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#development
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#development
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#version_control
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#version_control
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#version_control
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#version_control
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#version_control
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#namespaces
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#namespaces
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#namespaces
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#namespaces
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#namespaces
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#web
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#web
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#web
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#web
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#web
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#wifi
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#wifi
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#wifi
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#wifi
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#wifi
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#browsing
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#browsing
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#browsing
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#browsing
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#browsing
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#download
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#download
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#download
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#download
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#download
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#email
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#email
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#email
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#email
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#email
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#chat
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#chat
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#chat
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#chat
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#chat
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#werc
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#werc
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#werc
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#werc
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#werc
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#media
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#media
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#media
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#media
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#media
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#audio
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#audio
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#audio
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#audio
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#audio
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#video
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#video
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#video
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#video
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#video
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#youtube
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#youtube
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#youtube
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#youtube
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#youtube

• Graphics

◦ Viewing Images/Documents

▪ Reading Comics

◦ Creating Images

◦ Taking a Screenshot

▪ Screencasting

• Peripherals

◦ USB sticks

◦ CD/DVD/BS's

◦ Printers

• Games and other Fun Stuff

◦ Included Games

◦ Included Game Emulators

◦ 3rd Party Games

◦ Edutainment

▪ Arithmetic

▪ Quiz

▪ Touchtype

◦ Playing With Telnet

◦ Miscellaneous Fun

◦ Obscure Operating Systems

▪ Inferno

▪ UNIX V8

• Office

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#graphic
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#graphic
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#graphic
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#graphic
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#graphic
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#page
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#page
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#page
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#page
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#page
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#comic
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#comic
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#comic
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#comic
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#comic
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#paint
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#paint
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#paint
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#paint
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#paint
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#screenshot
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#screenshot
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#screenshot
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#screenshot
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#screenshot
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#screencasting
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#screencasting
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#screencasting
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#screencasting
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#screencasting
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#peripherals
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#peripherals
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#peripherals
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#peripherals
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#peripherals
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#memstick
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#memstick
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#memstick
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#memstick
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#memstick
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#cds
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#cds
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#cds
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#cds
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#cds
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#printers
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#printers
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#printers
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#printers
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#printers
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#games
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#games
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#games
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#games
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#games
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#included_games
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#included_games
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#included_games
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#included_games
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#included_games
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#included_emulators
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#included_emulators
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#included_emulators
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#included_emulators
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#included_emulators
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#extra_games
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#extra_games
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#extra_games
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#extra_games
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#extra_games
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#edutainment
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#edutainment
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#edutainment
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#edutainment
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#edutainment
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#edutainment_arithmetic
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#edutainment_arithmetic
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#edutainment_arithmetic
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#edutainment_arithmetic
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#edutainment_arithmetic
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#edutainment_quiz
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#edutainment_quiz
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#edutainment_quiz
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#edutainment_quiz
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#edutainment_quiz
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#edutainment_touchtype
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#edutainment_touchtype
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#edutainment_touchtype
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#edutainment_touchtype
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#edutainment_touchtype
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#telnet_fun
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#telnet_fun
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#telnet_fun
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#telnet_fun
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#telnet_fun
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#misc_fun
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#misc_fun
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#misc_fun
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#misc_fun
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#misc_fun
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#os_fun
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#os_fun
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#os_fun
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#os_fun
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#os_fun
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#inferno
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#inferno
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#inferno
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#inferno
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#inferno
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#unix_v8
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#unix_v8
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#unix_v8
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#unix_v8
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#unix_v8
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office

◦ Reading Office Documents

▪ Reading Epubs

◦ Writing Office Documents

▪ Tweaking Troff Macros

◦ Spellchecking

◦ PIM

▪ 2do Lists

▪ Queues

▪ Password Management

▪ Personal Accounting

▪ Time Management

◦ Math, Graphs and Units

◦ Spreadsheets

◦ Databases

▪ Awk as a Database

▪ Ndb as a Database

• Conclusion

What is Plan 9..?

Briefly, Plan 9 from Bell Labs is a computer operating system developed by the

original UNIX design team. After decades of work on Research UNIX in the late

80's, the team decided to write a new operating system from scratch, Plan 9 was

finally released in 1992, and a few years later they released yet another operating

system called Inferno (https://github.com/inferno-os/inferno-os), which share many of the

same characteristics as its sister project. These systems, and variations thereof,

have more or less been in continual development since. The history and design phi‐

losophy behind these operating systems, is interesting, but we will not talk about

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_reading
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_reading
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_reading
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_reading
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_reading
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#epub
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#epub
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#epub
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#epub
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#epub
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_writing
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_writing
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_writing
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_writing
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_writing
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_troff
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_troff
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_troff
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_troff
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_troff
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_spell
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_spell
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_spell
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_spell
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_spell
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_pim
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_pim
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_pim
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_pim
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_pim
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_2do
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_2do
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_2do
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_2do
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_2do
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_que
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_que
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_que
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_que
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_que
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_pass
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_pass
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_pass
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_pass
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_pass
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_account
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_account
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_account
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_account
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_account
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_time
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_time
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_time
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_time
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_time
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_math
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_math
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_math
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_math
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_math
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_sheet
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_sheet
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_sheet
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_sheet
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_sheet
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_db
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_db
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_db
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_db
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_db
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_db_awk
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_db_awk
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_db_awk
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_db_awk
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_db_awk
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_db_ndb
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_db_ndb
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_db_ndb
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_db_ndb
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_db_ndb
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#conclusion
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#conclusion
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#conclusion
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#conclusion
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#conclusion
https://github.com/inferno-os/inferno-os
https://github.com/inferno-os/inferno-os
https://github.com/inferno-os/inferno-os
https://github.com/inferno-os/inferno-os
https://github.com/inferno-os/inferno-os
https://github.com/inferno-os/inferno-os

that here. Instead, this article will focus on the practical aspects of using Plan 9 as

day-to-day desktop system.

Beware that prior exposure to UNIX is a double-edged sword. There are similar

sounding commands and conventions between the two platforms, and Plan 9 does

follow the UNIX philosophy (much more so then UNIX in fact). Nevertheless, Plan

9 is not UNIX! It is an operating system written entirely from scratch, backwards

compatibility was not a goal. If you expect just another Ubuntu spin-off, you will

be very disappointed. In fact, lets be clear here: You will be disappointed, period.

Now with that disclaimer out of the way, lets have some fun!

In 2002 the 4th edition of Plan 9 was released, it was essentially a rolling release,

that continued to receive updated from Bell Labs until 2015, when the project was

officially discontinued. In mid 2021 though, Bell Labs gave ownership of all previ‐

ous Plan 9 sources to the Plan 9 foundation (https://p9f.org). The goal of this founda‐

tion is to continue the development of Plan 9, but so far, not much has happened.

There are several community forks around though, two of them, 9legacy

(https://9legacy.org) and 9front (https://9front.org), sprang into existence around 2010. If

you want to use Plan 9 as a day-to-day desktop, which will be the focus of this ar‐

ticle, I strongly recommend going with 9front. It is likely the only candidate that

will actually run on your physical hardware, and it has many features that a mod‐

ern user takes for granted, such as auto-mounting USB sticks, wifi support, work‐

ing audio, video playback and git. 9front has an excellent fqa (https://fqa.9front.org)

and community wiki (https://wiki.9front.org), that do a far better job of presenting ac‐

curate information then I do (be prepared for quirky humor though!). Still, it can

be interesting to play with 9legacy too, if only for historical curiosity, so I will give

some pointers in this article on "classic Plan 9" (9legacy and the old 4th edition of

Plan 9 are nearly identical), where it differs significantly from 9front. For classic

Plan 9, the Plan 9 wiki (https://9p.io/wiki/plan9/plan_9_wiki) from Bell Labs is a better

source of documentation then the 9front resources.

Limitations and workarounds

https://p9f.org/
https://p9f.org/
https://p9f.org/
https://p9f.org/
https://p9f.org/
https://p9f.org/
https://9legacy.org/
https://9legacy.org/
https://9legacy.org/
https://9legacy.org/
https://9legacy.org/
https://9legacy.org/
https://9legacy.org/
https://9legacy.org/
https://9legacy.org/
https://9front.org/
https://9front.org/
https://9front.org/
https://9front.org/
https://9front.org/
https://9front.org/
https://fqa.9front.org/
https://fqa.9front.org/
https://fqa.9front.org/
https://fqa.9front.org/
https://fqa.9front.org/
https://fqa.9front.org/
https://wiki.9front.org/
https://wiki.9front.org/
https://wiki.9front.org/
https://wiki.9front.org/
https://wiki.9front.org/
https://wiki.9front.org/
https://9p.io/wiki/plan9/plan_9_wiki
https://9p.io/wiki/plan9/plan_9_wiki
https://9p.io/wiki/plan9/plan_9_wiki
https://9p.io/wiki/plan9/plan_9_wiki
https://9p.io/wiki/plan9/plan_9_wiki
https://9p.io/wiki/plan9/plan_9_wiki

More then anything, Plan 9 is a simple operating system. The kernel is only

200,000 lines of code, and the userland about a million. In comparison the source

code for the Firefox web browser is more than 24 million lines of code! As you

might imagine then, there are no "modern" web browsers in Plan 9. There are no

office suits, triple A games, VOIP or repositories of 30,000 pre-compiled packages.

Plan 9 is not for the faint of heart!

Of course there are workarounds for the above limitations, here are a few sugges‐

tions:

Connecting to Other Systems

VNC

It is simple enough to connect to a remote UNIX/Windows machine from Plan 9

using VNC, or vice versa (I use the term "UNIX" broadly - it includes Mac,

Android, Linux, BSD, etc...). From Plan 9 you can connect to a VNC server using

vncv, or run a VNC server with vncs (there is little reason to run a VNC server on

Plan 9 though, use drawterm, mentioned below, instead).

For example, assuming you have tigervnc installed on a UNIX machine, with the

ip address 192.168.0.1, and a desired VNC screen resolution of 1366 x 768 pixels:

You can run vncserver -geometry 1366x768 :1, and give it a login password (if you

are not prompted for a password you may need to run vncpasswd first). Now, on

the Plan 9 machine, run the command vncv 192.168.0.1:1, and login. By default

this will probably run a very basic twm desktop, which makes many inexperienced

users suspect that the desktop failed somehow. You probably want to change

~/.vnc/xstartup, to run a fancier window manager. To use openbox instead of twm

for instance, add this line to the file:

exec /usr/bin/openbox-session

You can choose whatever desktop you want here, but beware that configuring xs‐

tartup gets vastly more complex if you use some bloated mess like Gnome or KDE.

RDP

It is possible to connect to a remote Windows machine using RDP, see rd

(http://shithub.us/covertusername/rd/HEAD/info.html) if you need that sort of thing.

SSH

9front ships with a working ssh and sshfs client (sshfs mounts the remote file sys‐

tem in /n/ssh), but classic Plan 9 has a very outdated version of ssh, that in all

likelihood will not (or at least should not) be able to connect to your UNIX ma‐

chines.

9P

It is in fact much easier to import Plan 9 technologies to foreign systems then vice

versa, and there are good solutions for working with Plan 9 from UNIX. We will

discuss technologies such as plan9port and drawterm later, but for now, lets talk

about mounting the Plan 9 file system natively in UNIX using the 9P protocol.

There are various ways you can do this, including mounting it directly, in Linux at

least, like so: sudo mount -o rw -t 9p 192.168.0.1 /mnt (substitute the ip address

for the Plan 9 machine you're using). But you will probably get better results us‐

ing one of the many 9P clients that's out there, such as 9pfuse from the plan9port

package, or 9pfs (https://github.com/ftrvxmtrx/9pfs) You can use it like so: 9pfs

192.168.0.1 /mnt, assuming you have the right privileges.

Other methods

There is some support for NFS and SMB in Plan 9 (see nfs(4) and cifs(4)), but I

don't recommend using NFS, the Plan 9 client is very outdated. Speaking of out‐

dated, you naturally have ftpfs and telnet as well.

Porting applications

There exists a fairly good port of Plan 9 userland programs and services for UNIX,

called Plan9Port (https://9fans.github.io/plan9port) (or p9p for short - a more lightweight

http://shithub.us/covertusername/rd/HEAD/info.html
http://shithub.us/covertusername/rd/HEAD/info.html
http://shithub.us/covertusername/rd/HEAD/info.html
http://shithub.us/covertusername/rd/HEAD/info.html
http://shithub.us/covertusername/rd/HEAD/info.html
http://shithub.us/covertusername/rd/HEAD/info.html
http://shithub.us/covertusername/rd/HEAD/info.html
http://shithub.us/covertusername/rd/HEAD/info.html
http://shithub.us/covertusername/rd/HEAD/info.html
https://github.com/ftrvxmtrx/9pfs
https://github.com/ftrvxmtrx/9pfs
https://github.com/ftrvxmtrx/9pfs
https://github.com/ftrvxmtrx/9pfs
https://github.com/ftrvxmtrx/9pfs
https://github.com/ftrvxmtrx/9pfs
https://9fans.github.io/plan9port
https://9fans.github.io/plan9port
https://9fans.github.io/plan9port
https://9fans.github.io/plan9port
https://9fans.github.io/plan9port
https://9fans.github.io/plan9port

alternative is 9base (https://tools.suckless.org/9base)), it is available in the repositories of

most popular UNIX systems. Once installed, use the 9 command to run the

Plan9Port programs rather then the UNIX counterparts, eg. 9 acme. It does not

fully replicate the Plan 9 experience of course, but it does make UNIX less of a

pain to use.

To run a full Plan 9 shell, using Plan9Port commands instead of the UNIX equiva‐

lents, either run 9 acme, execute win in it and run 9 rc. Or run 9 9term, then run 9

rc. You can configure your ~/.xinitrc file to start the Plan 9 look-alike window

manager, with exec 9 rio, and set up a very authentic looking Plan 9 desktop.

But there is little point in doing so, unless you really want to hide the fact that

UNIX is running in the background. Plan9Port's rio only looks like the Plan 9

window manager, but it doesn't have the same useful features, and it is quite flaky

to boot. In my opinion there are far better native UNIX alternatives, including the

Plan9 inspired wmii/dwm window managers, or variations thereof.

It is possible, but much harder, to go in the other direction. Plan 9 has a UNIX

compatibility suit of programs and libraries in /bin/ape, such as ape/sh, which

gives you a ksh like UNIX shell (run vt first to emulate a VT-100 terminal). And

ape/cc a POSIX compliant C compiler, with corresponding UNIX-friendly libraries.

Plus a few other UNIX'y utilities. This UNIX compatibility is old and quite un‐

maintained. 9front has its own semi-official portability layer called npe, see the

9front porting guide (http://docs.9front.org/porting) for further tips.

Note however that simply having a UNIX shell, does not mean that all your shell

scripts will magically work. Plan 9 has it's own version of cat, echo, ls, sed and so

on. If your script uses these programs, it needs to be adapted to use the Plan 9

versions of them. As always, read the man pages carefully (no really - read them!).

Finally, even though Plan 9 has had a very good POSIX compliance, it's by no

means certain that UNIX programs will compile. Most will not. The majority of

UNIX software does not restrict themselves to POSIX alone, but require large ex‐

tensions. Most of which are not supported. For example, Plan 9 does not have X

https://tools.suckless.org/9base
https://tools.suckless.org/9base
https://tools.suckless.org/9base
https://tools.suckless.org/9base
https://tools.suckless.org/9base
https://tools.suckless.org/9base
https://tools.suckless.org/9base
http://docs.9front.org/porting
http://docs.9front.org/porting
http://docs.9front.org/porting
http://docs.9front.org/porting
http://docs.9front.org/porting
http://docs.9front.org/porting

(by default), curses, sockets, numerical UID/GID's or links, so any programs de‐

pending on such things needs to be patched and rewritten before they will work. In

practice only the simplest of programs can be ported with any reasonable amount

of effort.

Emulating other operating systems

In a traditional Plan 9 network, one or more CPU servers are providing file and

authentication services to multiple diskless workstations, called "terminals". These

terminals are desktop systems connected to the CPU server. This is a bit confusing

for UNIX users, so in this article we will refer to a diskless workstation as a remote

desktop, and a window running a shell as a terminal, as is the custom in UNIX. If

you have set up a CPU Server in Plan 9 (see section 7.5 (https://fqa.9front.org

/fqa7.html#7.5) and 7.6 (https://fqa.9front.org/fqa7.html#7.6) in the 9front fqa - see also

Quick CPU+AUTH+Qemu+Drawterm HOWTO below), either physically, or on a

virtual machine, you can emulate a Plan 9 remote desktop on a UNIX/Windows

machine with drawterm (https://drawterm.9front.org) (for classic Plan 9 use this link

(https://swtch.com/drawterm)). drawterm works very well, it also has access to the host

file system under /mnt/term, making it easy to work on files across operating sys‐

tems.

https://pspodcasting.net/dan/blog/2019/images/emulation.png
https://pspodcasting.net/dan/blog/2019/images/emulation.png
https://fqa.9front.org/fqa7.html#7.5
https://fqa.9front.org/fqa7.html#7.5
https://fqa.9front.org/fqa7.html#7.5
https://fqa.9front.org/fqa7.html#7.5
https://fqa.9front.org/fqa7.html#7.5
https://fqa.9front.org/fqa7.html#7.5
https://fqa.9front.org/fqa7.html#7.5
https://fqa.9front.org/fqa7.html#7.5
https://fqa.9front.org/fqa7.html#7.5
https://fqa.9front.org/fqa7.html#7.6
https://fqa.9front.org/fqa7.html#7.6
https://fqa.9front.org/fqa7.html#7.6
https://fqa.9front.org/fqa7.html#7.6
https://fqa.9front.org/fqa7.html#7.6
https://fqa.9front.org/fqa7.html#7.6
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_cpu
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_cpu
https://drawterm.9front.org/
https://drawterm.9front.org/
https://drawterm.9front.org/
https://drawterm.9front.org/
https://drawterm.9front.org/
https://drawterm.9front.org/
https://drawterm.9front.org/
https://swtch.com/drawterm
https://swtch.com/drawterm
https://swtch.com/drawterm
https://swtch.com/drawterm
https://swtch.com/drawterm
https://swtch.com/drawterm
https://swtch.com/drawterm
https://swtch.com/drawterm
https://swtch.com/drawterm

There is a 3rd party port of X (https://9p.io/sources/extra/X11.iso.bz2) for Plan 9, to‐

gether with linuxemu, it can be used to run Linux software natively (see section

8.7.1 (https://fqa.9front.org/fqa8.html#8.7.1) in the 9front fqa). This implementation is

not perfect however, it is old and tedious to work with, and I have had little suc‐

cess with it myself.

Virtualizing other operating systems

There are many different virtualization solutions available for UNIX/Windows ca‐

pable of running Plan 9, such as qemu and VirtualBox. Plan 9 has very limited

hardware support, especially if you want to use the classic versions of this operat‐

ing system. Virtualization is a practical way to eliminate such concerns.

9front also includes its own hypervisor (see section 8.7.5 (https://fqa.9front.org

/fqa8.html#8.7.5) in their fqa), vmx, capable of running Linux, OpenBSD, allegedly

Windows, and plausibly other operating systems. PS: You need modern Intel hard‐

ware for this to work.

https://9p.io/sources/extra/X11.iso.bz2
https://9p.io/sources/extra/X11.iso.bz2
https://9p.io/sources/extra/X11.iso.bz2
https://9p.io/sources/extra/X11.iso.bz2
https://9p.io/sources/extra/X11.iso.bz2
https://9p.io/sources/extra/X11.iso.bz2
https://fqa.9front.org/fqa8.html#8.7.1
https://fqa.9front.org/fqa8.html#8.7.1
https://fqa.9front.org/fqa8.html#8.7.1
https://fqa.9front.org/fqa8.html#8.7.1
https://fqa.9front.org/fqa8.html#8.7.1
https://fqa.9front.org/fqa8.html#8.7.1
https://pspodcasting.net/dan/blog/2019/images/oses.jpg
https://pspodcasting.net/dan/blog/2019/images/oses.jpg
https://fqa.9front.org/fqa8.html#8.7.5
https://fqa.9front.org/fqa8.html#8.7.5
https://fqa.9front.org/fqa8.html#8.7.5
https://fqa.9front.org/fqa8.html#8.7.5
https://fqa.9front.org/fqa8.html#8.7.5
https://fqa.9front.org/fqa8.html#8.7.5
https://fqa.9front.org/fqa8.html#8.7.5
https://fqa.9front.org/fqa8.html#8.7.5
https://fqa.9front.org/fqa8.html#8.7.5

Basics

I assume you have already downloaded and installed Plan 9, either on a physical

machine or on a virtual one. If not you can get the 9front iso (https://9front.org), and

follow the installation instructions in section 4 (https://fqa.9front.org/fqa4.html) of their

fqa. Again, this is not a guide for installing and configuring a Plan 9 system, use

the 9front fqa for that. Our focus here is doing day-to-day tasks after the initial

setup is done.

PS: This is also the subject of section 8 in the 9front fqa - Using 9front

(https://fqa.9front.org/fqa8.html). This article simply repeats and expands upon some of

that content.

PS: If you want to install 9legacy, it follows much the same steps as 9front, but

here are a couple of tips: After hitting Return at the "Location of archives

[browse]:" prompt, you will see /%, just type exit to continue the installation.

Choose plan9 when asked to "Enable boot method", otherwise just follow the de‐

faults and choose "y" at yes or no prompts. Finally: when installing 9legacy in

qemu, be sure to set the virtual harddisk as the first disk drive, eg. qemu-system-x86

-m 2G -hda 9legacy.img, do not use -hdd or similar, otherwise boot setup will fail

during installation.

Window Management

The window manager in Plan 9 is called rio, it provides a remarkably clean and

simple desktop, somewhat akin to twm in UNIX. Unlike twm though, it doesn't look

like crap by default, and the source code is only 6000 lines of code, which inciden‐

tally is also about the same size as Plan 9's graphical library, libdraw. In contrast

twm's source is closer to 30,000 lines, and the X Window System backend, more

then 8 million!

Window management is straight forward: rio provides only one menu, which you

can access by right clicking the mouse on the desktop background. Hold down the

mouse button while you are selecting a menu option, and release the mouse button

https://9front.org/
https://9front.org/
https://9front.org/
https://9front.org/
https://9front.org/
https://9front.org/
https://fqa.9front.org/fqa4.html
https://fqa.9front.org/fqa4.html
https://fqa.9front.org/fqa4.html
https://fqa.9front.org/fqa4.html
https://fqa.9front.org/fqa4.html
https://fqa.9front.org/fqa4.html
https://fqa.9front.org/fqa8.html
https://fqa.9front.org/fqa8.html
https://fqa.9front.org/fqa8.html
https://fqa.9front.org/fqa8.html
https://fqa.9front.org/fqa8.html
https://fqa.9front.org/fqa8.html
https://fqa.9front.org/fqa8.html
https://fqa.9front.org/fqa8.html
https://fqa.9front.org/fqa8.html

only after you have made your choice. To create a new window, which is always a

terminal, choose New. The mouse pointer changes to a cross. Right click in a corner

and drag the mouse, a red rectangular box appears, release the mouse button

when the window has the size you want.

If you choose the Delete option in the rio menu, the mouse pointer changes to a

cross with a circle. Right click on the window you wish to delete. If you Hide a

window, it will appear in the rio menu, select it from the menu to make it visible

again.

You can also Resize and Move a window by using the rio menu, but it's easier to

click and drag the windows directly: To resize a window, left click the blue border

and drag, to move it, right click and drag.

Right clicking in a terminal window will also bring up the rio menu, but other

programs will not necessarily do so. If you need to access the window manager

menu while running a fullscreen acme window for instance, you must first shrink

the window or move it out of the way, and then right click the gray rio back‐

ground. By default there are no key-bindings to control rio, you can only do so us‐

ing the mouse (What?!? Mouse actions are required?!? I know right, Plan 9 is so

radical - take a look at the workspaces section below though).

Copy Pasting

In order to use Plan 9 effectively, you need a 3-button mouse. Such mice are quite

common nowadays, with the scroll wheel doubling as the middle mouse button (for

laptops I recommend ThinkPads). The 3 mouse buttons, and combinations of

clicks, are used throughout Plan 9 for manipulating text. If you don't have a

mouse with 3 buttons, you can simulate the middle click by holding down the

Shift key and right clicking. But this will quickly become tedious, so go out and

buy a 3-button mouse ASAP.

You can select text in the normal way, by left click and drag. You can also double

left click a word to select it. If you double click the end of a line, the whole line

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#workspaces
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#workspaces

will be selected, and if you double click a parenthesis, or square bracket or some

such delimiter, the text inside these parenthesis will be selected.

To cut the selected text, hold down the left button and click the middle mouse

button. To paste the text, click the left button and while holding it down, click the

right button. To "copy" text, left click and middle click, release the middle mouse

button and click the right button. Such combinations of mouse clicks are called

mouse chording. They are used very consistently in Plan 9 programs, and feel intu‐

itive enough once you get the hang of it.

Essential Programs

There are only a handful of programs in Plan 9, they are simple to learn and work

very well. Some essential applications are:

https://pspodcasting.net/dan/blog/2019/images/apps.png
https://pspodcasting.net/dan/blog/2019/images/apps.png

• rio the window manager

• rc the shell

• acme a text editor, and more!

• mothra the web browser (use abaco in classic Plan 9)

• page a document/image viewer

• play, zuke music players (use juke in classic Plan 9)

• stats monitoring system load

Manipulating Text in the Terminal

You do not have to play around much in the Plan 9 terminal before you realize

that it works quite differently from UNIX. One surprise is that terminals do not

auto scroll, if you cat a very long file for instance, it will just display the first

screenful of text, and wait for you to manually hit PgDn or the down arrow key. This

behavior is actually very convenient, since it removes the need for pagers. But

sometimes it can cut against you. If you're compiling software for instance, the

compilation will stop once the text has filled the screen, and only continue if you

manually scroll down. Clearly, this is not what you want! Middle click the terminal

window and select scroll, it will now auto scroll, just as UNIX terminals do. You

can go back to the default behavior again, by middle clicking and selecting no‐

scroll.

Another annoyance might be that there is no Tab auto-completion. Don't worry,

use Ctrl-f instead, it does much the same thing. There is no advanced auto-

completion of program names and flags, like zsh and fish users might be accus‐

tomed to. But this really isn't an issue since Plan 9 has virtually no programs or

flags to speak of, as you will discover soon enough.

The third thing you may notice is that the terminal text can be freely edited. You

can add any text anywhere and copy paste the text arbitrarily, the Plan 9 terminal

thus feels much more like a text editor then a UNIX terminal (a consequence of

this free-form text editing is that the mouse cursor has to be put at the end of the

last line in order to execute a command with the Return key, otherwise it will just

add a literal newline to the text - this is only mildly annoying once you get used to

it). What's the point of this novel design? First of all it eliminates a host of special

purpose programs that UNIX requires, for example there is no clear command in

Plan 9, you just cut the text. There is no reset or readline either, as they are not

needed. Secondly, once learned, this behavior feels very intuitive. Why shouldn't

you be able to cut and paste text and freely sprinkle your terminal output with

random comments? Going back to a UNIX terminal, after having spent some time

in Plan 9, really feels like leaving the 90's - and going back to the 70's (fun tip:

check out /bin/hold to see how a basic text editor in Plan 9 can be written in just

five lines of shell script!).

Lastly, there is no history command in the Plan 9 terminal, hitting the up arrow

key on the keyboard will just move the pointer one line up, like any text editor

would. - What else did you expect? Relax though, you can rerun the previous com‐

mand with "" (" will reprint it).

Hang on! The command "", isn't double quotes used for quoting?!? Not in Plan 9,

double quotes are just ordinary characters. Whereas UNIX has three escape char‐

acters, Plan 9 has only one, the single quote (well, OK, backslash is also used in

some situations). The UNIX command "$message has a literal \$ and ' sign",

would be ''$message' has a literal $ and '' sign' in Plan 9 (two single quotes

within single quotes is interpreted as one literal single quote).

PS: " and "" are actually shell scripts, provided by 9front, classic Plan 9 systems

do not have these.

Back to our topic of rerunning commands, note that the need to auto-complete

text and rerun commands are much greater in UNIX then in Plan 9. It is easy to

copy paste text in the terminal, so use that functionality for what it's worth! You

don't need to use insane syntax like ls !$ to run ls with the previous arguments,

or ^foo^bar to spell correct the last argument and rerun it. Just type ls in the ter‐

minal and copy paste the previous arguments, and if you need to spell correct the

last argument, then just do so, copy paste the result when you're done. There is

also a full copy of the terminal text in /dev/text. So the command cat /dev/text >

transcript is essentially the same as script in UNIX, > /dev/text is basically

clear, and the command grep '^; ' /dev/text the same as history (assuming of

course that your shell prompt is ;). Note that you can search this log for other

things then just your previous commands, and you can manipulate this data in

many other interesting ways as well. For example, need to do advanced searching

or manipulation of the shell history? Just open /dev/text in a text editor, eg. sam

/dev/text.

But what if you want a system wide history log for all of your windows? There is

no such file in Plan 9, but it's easy enough to make one. For example, the following

script will save your command history to a central file. Only unique commands are

saved, if we saved all of the text, our central history file would grow extremely

large. For example, it would be quite redundant to have ten thousand entries of cd

in our history log, not to mention hundreds of copies of the manpages and text

files we have been reading.

#!/bin/rc

savehist - prune and save command history

usage: savehist

set some defaults

rfork ne

temp=/tmp/savehist-$pid

hist=$home/lib/text

touch $hist

rewrite history

cat <{grep '^; ' /dev/text} $hist | sort | uniq > $temp

mv $temp $hist

With this in place we can run savehist before exit to save our current history, or

we can wrap these steps into one by adding something like this to our $home/lib

/profile: fn quit{ savehist; exit } (PS: Don't call this function exit unless you

really want a fork bomb!)

In addition to /dev/text you also have /dev/snarf, which holds the "snarf" buffer,

the clipboard in Plan 9 speak (if you want to write to the window, use /dev/cons).

All of these files refer to your current window, if you want to use these files for a

different window, see the rio scripting section below.

The graphical desktop runs "within" the text console in Plan 9, so writing to the

system console will actually print the text verbatim onto the screen. For example,

running sleep 600; echo Bug Me! > '#c/cons' will send a fairly obtrusive notifica‐

tion to your screen in 10 minutes. This can be a bit disconcerting for a beginner,

but it's easy to redirect such messages if you don't want them to clutter up your

screen. Just run cat /dev/kprint in a window and hide it. See the rio scripting sec‐

tion below, for some ideas on how to avoid or abuse this functionality further.

Acme - The Do It All Application

The acme text editor is arguably the main user application for Plan 9, it doubles as

the systems file manager, terminal, mail reader and more. It can even be used as a

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#rio_scripting
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#rio_scripting
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#rio_scripting
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#rio_scripting
https://pspodcasting.net/dan/blog/2019/images/acme.png
https://pspodcasting.net/dan/blog/2019/images/acme.png

fully fledged window manager, by replacing rio with acme in your $home/lib/pro‐

file (but I don't recommend it - you will not be able to run any other programs -

then again, why would you want to?).

Let's do a whirlwind tour of acme: The first blue row contains commands for the

entire acme window, such as Exit, if you middle-click this button, acme will exit.

Dump will create a file called acme.dump, this can be used to save a particular win‐

dow arrangement, and restored with acme -l acme.dump. Putall will save all modi‐

fied text files.

If you middle-click Newcol a new column will appear. The column has it's own row

of commands, in the second blue row. Delcol will delete the column. Cut, Paste and

Snarf (eg. "Copy"), will do text manipulations. But it's easier to use mouse chords

for this: Left and middle-click to Cut, Left and right-click to Paste, and finally Left

and middle-click, then right-click to Snarf, or Copy. The mouse chords are awk‐

ward to explain, but try it out, it will feel very intuitive with a little practice.

Middle-clicking New will create a new window in the column. Again, it too, will

have it's own row of commands. Del will delete the window. The window is initially

empty, try writing some random text into it. You will see that a new command ap‐

pears, Undo (it's meaning should be obvious). After typing in some text, you can

also hit the Esc key to mark the recently added text, hitting Esc again, will cut the

text. How do we save our file? First we need to give it a name: Click on the far left

side of the menu, left of Del, and type /usr/glenda/testfile (glenda is the default

user in Plan 9, and /usr/glenda is the default home directory). Yet another com‐

mand will appear, Put, middle click it to save your work. That was a lot of typing!

Isn't there an easier way to do this? Sure, remember that Plan 9 allows you to

copy paste pretty much anything. Find the directory you want in a terminal, with

Ctrl-f auto-completion and everything, then print the directory name with pwd,

and just copy paste that into the acme window, and append your new filename.

Easier yet, run touch testfile; B testfile from a terminal and the file will be

opened for you in acme.

By now you will have noticed a very unique feature of acme, it's menus are pure

text. The "buttons" are just regular words. To illustrate: Type Del (case sensitive!)

somewhere in the yellow text window, then middle click it. The window will disap‐

pear. Del is just a command, same as echo or cat. Another test: Type echo hi

there and middle click, and drag, so that the red mark covers all three words. hi

there will be printed in a new window.

You can use the Look command to search for words in the window. Type monkey a

couple of times in the yellow text window, now type Look monkey in the blue win‐

dow menu, and middle click and drag, to mark the two words. The first occurrence

of monkey will be highlighted, run the command again, and the second occurrence

will be highlighted, and so on. An easier method however would be to just right-

click the word monkey, anywhere in the text, the next occurrence of the word will

be highlighted, and the mouse pointer will be moved there. Just right-click again

to see the next occurrence of the word, and so on.

The Zerox command in the column menu will duplicate a window, this is very use‐

ful if you are editing a long file, and you need to see or edit different parts of the

file at the same time, any changes made in one window will appear in the other.

Sort will sort the column windows by name, it does not sort the content of the

windows. To do that, mark the text, type |sort in the window menu, and middle-

click it. As you can see, you can freely use arbitrary Plan 9 commands to manipu‐

late the text in acme.

If you want to do search and replace operations, use the Edit command. This com‐

mand is a back end for the sam text editor, which uses much the same text editing

commands as ed (which again is similar to sed or vi). For example, double click

one of the monkey words to highlight it, then type Edit s/monkey/chimpanzee/, and

middle click and drag to execute this command. The highlighted word will be

changed to chimpanzee. To change all the occurrences of monkey, type Edit ,s/mon‐

key/chimpanzee/g (in vi this would be :%s/monkey/chimpanzee/g).

Side note: Although the above ed style substitution works in sam, sam is not a line-

based editor like ed, and a more proper sam command for the above would be: Edit

,x/monkey/c/chimpanzee/ (that is: for each /monkey/ change to /chimpanzee/). To

read the sam tutorial, run: page /sys/doc/sam/sam.tut.out

acme lacks many built-in features that a UNIX user might expect, but you can cre‐

ate much of this functionality simply by piping the text through standard utilities.

Here are some examples:

• Edit = print current line number

• Edit ,|sort -r reverse sort the file

• Edit ,|grep -n . add line numbers

• Edit ,s/^.*: //g remove line numbers

• Edit s/^/ /g indent text

• Edit s/^ //g unindent text

• Edit s/^/#/g comment out lines of code

• Edit s/^#//g uncomment lines of code

• Edit ,|wc -c file word count

• Edit ,|fmt nicely format the file

• Edit ,|cb beautify C source code

• Edit s/./-/g underline after copying a line

• |tr A-Z a-z lowercase text

• |tr a-z A-Z uppercase text

• |tr a-zA-Z n-za-mN-ZA-M rot13 text

Open a New window and type in the filename /usr/glenda to the far left, then type

Get to the far right, right of Look, and middle click it. The contents of the

/usr/glenda directory will fill the window. If you right-click on a directory in this

window, the contents of that directory will be opened in a new window. To do op‐

erations on files, just type a command and execute; for example type rm before

testfile, and middle click the two words to remove this file. If you right-click a

text file, the contents of that file will be opened for editing in acme.

Exactly what happens when you right-click something in acme, depends on the

word you click. For example clicking on the word /usr/glenda/pictures/cirno.png,

will open this picture in the image viewer page, and clicking jazz.mp3, will start

playing the audio file with play. Provided of course that the files in question exist

on your system. The last example also assumes that the jazz.mp3 file is located in

the same directory as the one you launched acme from, if not you need to specify a

correct file path. The actual work of connecting the right words to the right pro‐

grams is handled by plumber, which we will talk about later, but for now it's

enough to know that right clicking a filename anywhere in acme will usually just

"do the right thing" (you'll note though that actions are evaluated for words, not

files).

Each window has a dark blue square to the far left of the menu, you can click and

drag this box to resize or move the window to another column. The columns them‐

selves also have a dark blue square, click and drag this to resize or move the col‐

umn.

You can also right-click on the dark blue window square, to hide all the column

windows except that one, left-click on it to bring the windows back. Left-clicking

on the square will increase the window size a little, middle-clicking will maximize

the window.

Left-clicking on the scroll bar will scroll upwards, right-clicking downwards.

Clicking towards the bottom of the scroll bar will scroll a lot, clicking towards the

top will only scroll a little. Middle clicking will transport you directly to that por‐

tion of the file. Play around and experiment with these mouse actions, pretty soon

you will get the hang of it. Other Plan 9 applications with scroll bars work the

same way (in 9front at least).

Multiple Workspaces

https://pspodcasting.net/dan/blog/2019/images/rio.png
https://pspodcasting.net/dan/blog/2019/images/rio.png

rio does not have virtual workspaces per se, but 9front includes some tools that let

you set up a keyboard driven desktop with pseudo-workspaces. For instance, you

can add the following snippet to your $home/lib/profile:

fn workspaces{

 /dev/kbdtap |[3] bar

}

You can now run workspaces and switch to a new "workspace" with Win+n (where

Win is the Windows key next, between the left Ctrl and Alt keys, and n is a num‐

ber between 0 and 9). You can also move windows about with Win+Arrow, or resize

them with Win+Shift+Arrow (see riow(1) and bar(1) for more info). Classic Plan 9

does not have these tools, although there is an old fork of rio called rio-virtual,

that does include virtual workspaces. There are also ways to create such services

without the 9front extensions: You'll note that all windows in all riow "workspaces"

are listed in the rio menu and can be unhidden. This is because riow doesn't actu‐

ally add workspaces as such, but rather provides a clever way of hiding and unhid‐

ing groups of windows, and thus gives you the illusion of workspaces. For a similar,

but more simplistic, way to do this see the rio scripting section below.

It is actually quite easy though to manually create pseudo-workspaces in rio: Just

create a new terminal window and run plumber ; rio. This will run a rio desktop

in this window (plumber is not required here, but it will make sure that files auto‐

https://pspodcasting.net/dan/blog/2019/images/rio.png
https://pspodcasting.net/dan/blog/2019/images/rio.png
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#script_workspace
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#script_workspace

matically opened will only be opened in this isolated rio and not outside of it).

You can maximize this "virtual workspace" and do your work, hide this window

when you want to go back to your first workspace, then switch back to it by select‐

ing the hidden window in the rio menu. You can have as many of these

workspaces as you like, and you can run rio inside rio inside rio ad infinitum... To

organize this mess a bit you can also manually label your workspaces. Lets say you

have 4 rio workspaces hidden in the background, the rio menu will just list them

as: rio, rio, rio, rio. That's not very helpful. By running grep rio /mnt/wsys

/wsys/*/label you will see what window id these workspaces have. You can then

redefine their label, eg. echo -n workspace1 > /mnt/wsys/wsys/3/label. The rio

menu will now list this window as "workspace1", instead of "rio".

Another simple workspace solution is drawterm. Once a Plan 9 CPU server (see sec‐

tion 7.5 (https://fqa.9front.org/fqa7.html#7.5) and 7.6 (https://fqa.9front.org/fqa7.html#7.6) in

the 9front fqa, and the Quick CPU+AUTH+Qemu+Drawterm HOWTO section

below) has been configured, you can connect as many drawterm clients to it as you

wish (all of the workspace related tricks mentioned above will also work from

within drawterm).

Tiling Windows

https://fqa.9front.org/fqa7.html#7.5
https://fqa.9front.org/fqa7.html#7.5
https://fqa.9front.org/fqa7.html#7.5
https://fqa.9front.org/fqa7.html#7.5
https://fqa.9front.org/fqa7.html#7.5
https://fqa.9front.org/fqa7.html#7.5
https://fqa.9front.org/fqa7.html#7.6
https://fqa.9front.org/fqa7.html#7.6
https://fqa.9front.org/fqa7.html#7.6
https://fqa.9front.org/fqa7.html#7.6
https://fqa.9front.org/fqa7.html#7.6
https://fqa.9front.org/fqa7.html#7.6
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_cpu
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_cpu
https://pspodcasting.net/dan/blog/2019/images/tiling.png
https://pspodcasting.net/dan/blog/2019/images/tiling.png

First of all, acme is a tiling window manager. Just maximize the editor and do your

stuff.

Secondly, you can use your rio startup file, $home/bin/rc/riostart, to automati‐

cally set up a desktop that suits your needs. For example, if you have a 1366x768

screen, you can add these instructions to add an acme window to the left half of the

screen, and a terminal window on the right half:

window 0,0,683,768 acme

window 683,0,1366,768

Unlike UNIX, graphical programs executed in a Plan 9 terminal will not launch a

new window, rather, the terminal will morph into this new program. In other

words, running the PDF/Image viewer page, or the web browser mothra in a termi‐

nal for instance, will in no way effect window placement. So having an initial win‐

dow placement that works on your desktop, will significantly reduce the need for

automatic window tiling. But if you need that, take a look at the rio scripting sec‐

tion below.

Plumbing

We have already seen brief mentions of the Plan 9 plumber a few times in this

guide, but lets take a closer look. The plumber is essentially a simple inter-process

messaging system. It lets you define a set of actions based on text patterns given

to it. For instance, in the system wide plumber rules in /sys/lib/plumb/basic, you

will find the following section:

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#script_tiling
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#script_tiling

open urls with web browser

type is text

data matches 'https?://[^]+'

plumb to web

plumb client window $browser

This rule is very simple: If the message is text (it's always text), if it matches

"http://" or "https://" something or other, define it as "web" related, and launch

a new program, "$browser", with the given text as arguments. So in effect, when‐

ever an URL is sent to the plumber, it opens it up in your default web browser.

So, right clicking http://9front.org in acme will open up that web page, likely in

mothra. You can also run the command plumb http://9front.org in a terminal, for

the same effect.

You can define your own rules too. For example, I wrote my own simple Epub

reader, and added these lines to $home/lib/plumbing, in order to always open Epub

files with my custom reader:

open epubs with custom script

type is text

data matches '([a-zA-Z0-9_\-./]+).(epub|EPUB)'

arg isfile $0

plumb to image

plumb start window eread $file

This rule adds a check to see if the given argument is an existing file, if it is $file

is set to this filename, but the logic is otherwise much the same as the above URL

rule. Just make sure that your custom plumber rules end with the line include ba‐

sic, otherwise you will loose all of the default system plumbing rules.

Plumbing rules are not restricted to file suffixes. Suppose you are reading through

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#epub
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#epub
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#epub
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#epub

several documents at the moment, and you want to bookmark these to keep track

of your reading progress. The solution is simple, write a database, lets call it

$home/lib/bookmarks, with content similar to this:

work stuff

/usr/glenda/doc/papers/lengthy.pdf!123

/usr/glenda/doc/papers/plain.txt:206

plan 9 stuff

/sys/doc/9.ps!3

/sys/doc/acme/acme.ps

acme(1)

fun stuff

/usr/glenda/doc/books/peter_pan.txt:/Chapter 2/

/usr/glenda/music/podcasts/bsdnow/acdecc6a-f7b7-4d64-b64d-

f7be713b78e2.mp3

Right clicking on any of these lines in acme, will open up the file with an appropri‐

ate program. page for PDF's and postscript files, play for audio files, and plain

text files directly in acme. But the default plumbing rules allow you to be even

more specific then that. Piping something like lengthy.pdf!123, will not only open

the PDF in page, but also on page 123. Plain text files can also be addressed, such

as plain.txt:206 for line 206 of that file, or peter_pan.txt:/Chapter 2/ to open up

our Peter Pan book and look for the text string "Chapter 2". Usually such textual

plumbing rules are used when programming, to open a source file on the offending

line by right clicking a diagnostic message for instance, but we can also used them

to keep track of ourselves.

Speaking of which, lets look at one more example of how we can modify plumbing

rules to suit our workflow. in the PIM section below, I mention a script called que,

which iterates over a list (a queue), by printing the next line in the file whenever

you run que on it. Lets assume we have a list called $home/lib/que/peterpan with

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_que
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_que
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_que

the following content:

/usr/glenda/doc/books/peter_pan.txt:/Chapter 1/

/usr/glenda/doc/books/peter_pan.txt:/Chapter 2/

/usr/glenda/doc/books/peter_pan.txt:/Chapter 3/

...

Now, each time we run que $home/lib/que/peterpan, it will tell us what chapter to

read next in our book. And sure enough, we can right click this output in acme to

open up the book in the right place (since "Chapter x" contains whitespace we

need to right click and drag to mark the whole line). But that is waaay too much

work for a lazy pants such as myself! What I really want is just to add something

like this to my bookmark database:

/usr/glenda/lib/que/peterpan:que

Right click this in acme, and have it automatically call que and open up the right

chapter for me. As it turns out, such automation is easy-peasy, I just need to add

this plumbing rule to my $home/lib/plumbing (and update my rule set with the

command: cp $home/lib/plumbing /mnt/plumb/rules):

plumb the next item in a queue file

type is text

data matches '([a-zA-Z0-9_-./]+)(:que)'

arg isfile $1

plumb to none

plumb start rc -c 'plumb `{que '$file'}'

This rule checks if the plumber received "something_something:que", and that the

first argument (excluding the :que) was a real file. We are not interested in open‐

ing this file, so we plumb it to "none", and then we run our shell command plumb

`{que $file}. Of course our queue doesn't need to be plain text chapters, they

could be PDF's with page numbers or sequential audio files in a podcast, or what

have you.

We can abuse the plumber in all kinds of fun and potentially destructive ways. It

basically allows you to define any text pattern and connect that to any command.

Even if you don't go bananas with this, it is an eye opening experience to read

/sys/lib/plumb/basic and realize just how simple inter-process messaging can be!

System Administration

Basic System Administration

To shutdown or reboot a Plan 9 system, you can use the fshalt and reboot com‐

mands. The fshalt command only halts the file system, but if you have enabled

ACPI support, by adding *acpi=1 in plan9.ini (see section 9.2.3 (https://fqa.9front.org

/fqa9.html#9.2.3) in the fqa), it will also power off the system on supported hardware

(in either case it is perfectly safe to turn off the machine using the power button

once the file system is halted).

If you are using a remote Plan 9 desktop, such as drawterm, it is safe to just kill

the application directly. The remote desktop is stateless, and thus shutting it down

will in no way effect the host file system. In fact, the system is designed to run a

CPU server 24/7, connected to diskless clients where the users do their actual

work. Probably because of this design, Plan 9 file systems do not try to recover

from a power loss, so don't pull the plug on your file server!

I had some CWFS file system corruptions on one of my old laptops. None of the

9front devs I talked to had seen this problem, so it might very well be hardware re‐

lated. In any event, the following script solved my issue. It's unlikely that you'll

run into the same problem, but I leave the script here since it has interesting edu‐

cational value (of course, this is no a substitute for backups):

https://fqa.9front.org/fqa9.html#9.2.3
https://fqa.9front.org/fqa9.html#9.2.3
https://fqa.9front.org/fqa9.html#9.2.3
https://fqa.9front.org/fqa9.html#9.2.3
https://fqa.9front.org/fqa9.html#9.2.3
https://fqa.9front.org/fqa9.html#9.2.3
https://fqa.9front.org/fqa9.html#9.2.3
https://fqa.9front.org/fqa9.html#9.2.3
https://fqa.9front.org/fqa9.html#9.2.3
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_backups
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_backups

#!/bin/rc

halt - paranoid shutdown procedures

usage: halt [-r]

bugs: slow shutdown, plausibly overkill

rfork e

fn rtmp{

rm -rf /tmp/*

}

fn dump{

 if (test -f /srv/hjfs.cmd) echo dump >> /srv/hjfs.cmd

 if not echo dump >> /srv/cwfs.cmd

}

fn sync{

 if (test -f /srv/hjfs.cmd) echo sync >> /srv/hjfs.cmd

 if not echo sync >> /srv/cwfs.cmd

}

fn fsck{

if (test -f /srv/cwfs.cmd)

echo check ream >> /srv/cwfs.cmd

}

wait=120

if (~ $#* 0) cmd=/bin/fshalt

if not cmd=/bin/reboot

rtmp; dump; sync; sync; sync; fsck; sleep $wait; $cmd

Update: A new file system from the 9front developers is in the works, GEFS

(https://orib.dev/gefs.pdf) (A Good Enough File System), that tries to recover safely

after a crash, and it has some intriguing long term goals, such as self-healing.

PS: fshalt does not work right in qemu if you use classic Plan 9, such as 9legacy. In

such cases you should write your own shutdown script, like so (note: this is not an

issue in 9front):

https://orib.dev/gefs.pdf
https://orib.dev/gefs.pdf
https://orib.dev/gefs.pdf
https://orib.dev/gefs.pdf
https://orib.dev/gefs.pdf
https://orib.dev/gefs.pdf
https://orib.dev/gefs.pdf
https://orib.dev/gefs.pdf
https://orib.dev/gefs.pdf

#!/bin/rc

halt - shutdown file server

usage: halt

echo fsys main sync >>/srv/fscons

sleep 5

echo Its now safe to turn off your computer

echo fsys main halt >>/srv/fscons

To monitor your remaining battery, memory usage, ethernet traffic, system load

and other resources, you can use the stats and memory commands. Simply cat'ing

around in /dev will also provide much system information, for instance cat

/dev/kmesg is essentially equivalent to dmesg in UNIX. There is also limited support

for suspend and hibernate if you add the apm0= value to plan9.ini (see section

9.2.3 (https://fqa.9front.org/fqa9.html#9.2.3) in the fqa and apm(8)). Don't expect this to

work though, ACPI and APM is a hairy business (https://ftp.openbsd.org/pub/OpenBSD

/songs/song45.mp3)!

PS: memory is just a simple shell script in 9front that cat's /dev/swap and reformats

the values in more human readable form, classic Plan 9 systems do not have this

script.

Battery Monitoring

Speaking of not working, battery monitoring usually doesn't in my experience (to

check if it works on your box, just run stats, right click and add battery). And un‐

less you are very lucky, plugging in a headset will not automatically redirect audio

output either. I had both problems on my cheap Acer laptop (note to self: only

buy ThinkPads from now on). The last issue will be revisited in the audio section

below, as for battery monitoring, a very simple workaround is to run sleep 7200;

echo Warning: batteries about to go out! > '#c/cons'. Assuming that your com‐

puter has 2 hours (7200 seconds) and 15 minutes of battery capacity, and you run

this command when you know that the machine is fully charged, you will get noti‐

https://fqa.9front.org/fqa9.html#9.2.3
https://fqa.9front.org/fqa9.html#9.2.3
https://fqa.9front.org/fqa9.html#9.2.3
https://fqa.9front.org/fqa9.html#9.2.3
https://fqa.9front.org/fqa9.html#9.2.3
https://fqa.9front.org/fqa9.html#9.2.3
https://ftp.openbsd.org/pub/OpenBSD/songs/song45.mp3
https://ftp.openbsd.org/pub/OpenBSD/songs/song45.mp3
https://ftp.openbsd.org/pub/OpenBSD/songs/song45.mp3
https://ftp.openbsd.org/pub/OpenBSD/songs/song45.mp3
https://ftp.openbsd.org/pub/OpenBSD/songs/song45.mp3
https://ftp.openbsd.org/pub/OpenBSD/songs/song45.mp3
https://ftp.openbsd.org/pub/OpenBSD/songs/song45.mp3
https://ftp.openbsd.org/pub/OpenBSD/songs/song45.mp3
https://ftp.openbsd.org/pub/OpenBSD/songs/song45.mp3
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#audio
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#audio

fied 15 minutes before your battery runs out.

The main problem with this elegant solution, is that it does not work at all if you

expect to reboot your computer at some unknown point in the future. I find that

this is frequently the case when I am traveling, and need battery monitoring the

most. So I need a way to start a 2 hour countdown that persists across reboots,

this script does the trick:

#!/bin/rc

batt - print estimated remaining battery power

usage: [battery=min] batt [-]

#

bug: the script doesn't actually know anything about your

battery,

the user is required to run batt - initially to set a

timer.

set some defaults

rfork e

if(~ $battery "") battery=120 # hardware dependent

capa=$battery

batt=$home/lib/battery

stat='Battery at %p%% estimated remaining time: %r min'

mesg='Your battery is about to run out!'

ping=$home/media/music/samples/mario.mp3

parse arguments

switch($#*){

case 0

 if(! test -f $batt){

 echo 'batt: countdown hasn''t started, run batt - first!'

>[1=2]

 exit notstarted

 }

 used = `{cat $batt}

 pros = `{echo 100 - ($used^00 / $capa) | hoc | sed 's/\..*//'}

 remn = `{echo $capa - $used | hoc}

 echo $stat | sed -e 's/%p/'$pros'/' -e 's/%r/'$remn'/' -e

's/%%/%/'

case 1

 # -, start or continue a countdown

 if(! test -f $batt) echo 0 > $batt

 while (sleep 60) {

 date > $home/lib/end

 used = `{echo `{cat $batt} + 1 | hoc}

 if (test $used -ge $capa) {

 echo $mesg >'#c/cons'

 if(test -f $ping) play $ping >[2]/dev/null

 rm -f $batt

 exit

 }

 echo $used > $batt

 }&

case *

 echo 'Usage: [battery=min] batt [-]' >[1=2]

 exit usage

}

You'll note that this simple countdown script measures time in minutes (120, not

7200), the main reason for this crude measurement of time is battery related, if we

counted every second, the script would be 60 times harder on our battery. Anyway,

using this script you can start a countdown when you know the battery is fully

charged with the command batt - (or battery=80 batt - or whatever to set a

countdown other then the default 120 minutes). Once that daemon has started,

run batt to get an estimated remaining time of juice. But here comes the clever

part: After a reboot run batt - to continue a battery countdown! In fact, you can

fully automate this step by adding something like this to our $home/lib/profile:

battery=80 # default battery capacity

if (test -d /mnt/term/dev){

 # do drawterm stuff

 ...

}

if not {

 # do non-drawterm stuff

 if(test -f $home/lib/battery) batt -

 ...

}

Don't let the boilerplate here scare you. If you don't use drawterm, just add

if(test -f $home/lib/battery) batt -, and you're done (but you probably don't

want to mess with battery stuff if you are using drawterm, for obvious reasons).

This command simply checks to see if the file that the batt daemon uses to mea‐

sure the battery countdown exists. Since our batt script removes this file once the

countdown has expired, it knows that an unfinished countdown was in progress be‐

fore the last reboot, and so it respawns the daemon. This is also a convenient place

to set your default battery capacity. Of course, you could just edit the batt script,

but if you are using this on multiple laptops, setting such a value in $home/lib

/profile might be more practical.

Finally, to know when the laptop is done recharging from a depleted battery, just

measure the time it takes in Ubuntu, or other suitable grandma distro, and set an

appropriate timer in Plan 9. We could also wrap this up in a simple script that in‐

terrupts a battery countdown and cleans up the temp file:

#!/bin/rc

recharge - estimate when battery is recharged

usage: recharge

slay batt | rc

rm -f $home/lib/battery

sleep 1800

echo 'Battery is fully charged!' > '#c/cons'

Our script is quite unintelligent, but in my opinion it is a nice example of how you

can create fairly useful and simple workarounds on UNIX-like operating systems,

even when they lack vital features. (However, if you do go for this solution on your

Plan 9 lappy, make sure you get a warning well in advance of a black out!

Traditionally, Plan 9 systems do not handle cold reboots all that well)*

Configuring Startup and Shutdown

Plan 9 has no /etc directory like UNIX, instead it is configured through a small

handful of files. The most important of which is probably $home/lib/profile, the

user startup file. This is where you customize your user specific settings, it is some‐

what analogous to ~/.profile in UNIX, but more important since desktop and

shell are much more integrated in Plan 9. Personally I like to add this line to my

lib/profile: . $home/lib/aliases, which enables me to add custom aliases to this

separate file, while keeping only system related configurations in lib/profile. But

that is just a matter of taste.

Beware that the settings in $home/lib/profile needs to cater to very different situ‐

ations! Whether you are booting a CPU server, a standalone "terminal", or a disk‐

less one, or are logging in through a remote connection (rcpu or drawterm for exam‐

ple), they all read lib/profile, but often need different customization's. The moral

is, be careful when editing your profile, hubris cause debris.

The kernel configuration is in the plan9.ini file, which resides in a special boot

partition. To read the contents of this partition you must first run 9fs 9fat (for

classic Plan 9 run 9fat:), you can then read this file in /n/9fat/plan9.ini (note:

like all Plan 9 commands this manipulates the namespace of your current process,

so you will not see this file in other processes). It is by editing this file that you

configure your system to run as a CPU server or terminal, you may also need to

tweak some hardware specific values here. See plan9.ini(8) and section 3

(https://fqa.9front.org/fqa3.html) of the fqa.

Network configuration is handled in /lib/ndb/local, with additional related files in

that directory. But you don't need to mess around with this file if you just want to

quickly connect to the internet on a laptop (see section 6 (https://fqa.9front.org

/fqa6.html) in the fqa). Mail configuration is handled by a number of files in

/mail/lib (see section 7.7 (https://fqa.9front.org/fqa7.html#7.7) in the fqa).

Lastly there is also a desktop specific startup file in $home/bin/rc/riostart, which

is useful for specifying what programs and windows to auto launch, it is discussed

in the tiling windows section of this article.

Wallpapers, themes, etc...

The rio window manager is painstakingly crafted with love and care to look as

https://fqa.9front.org/fqa3.html
https://fqa.9front.org/fqa3.html
https://fqa.9front.org/fqa3.html
https://fqa.9front.org/fqa3.html
https://fqa.9front.org/fqa3.html
https://fqa.9front.org/fqa3.html
https://fqa.9front.org/fqa3.html
https://fqa.9front.org/fqa3.html
https://fqa.9front.org/fqa3.html
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#web
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#web
https://fqa.9front.org/fqa6.html
https://fqa.9front.org/fqa6.html
https://fqa.9front.org/fqa6.html
https://fqa.9front.org/fqa6.html
https://fqa.9front.org/fqa6.html
https://fqa.9front.org/fqa6.html
https://fqa.9front.org/fqa6.html
https://fqa.9front.org/fqa6.html
https://fqa.9front.org/fqa6.html
https://fqa.9front.org/fqa7.html#7.7
https://fqa.9front.org/fqa7.html#7.7
https://fqa.9front.org/fqa7.html#7.7
https://fqa.9front.org/fqa7.html#7.7
https://fqa.9front.org/fqa7.html#7.7
https://fqa.9front.org/fqa7.html#7.7
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#tiling
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#tiling
https://pspodcasting.net/dan/blog/2019/images/riotheme.png
https://pspodcasting.net/dan/blog/2019/images/riotheme.png

boring as humanly possible. This is important - a distraction free environment is a

productive environment. But it is possible to install 3rd party patches that let you

customize the rio theme and set a wallpaper, if you really crave such frippery (this

will not work for classic Plan 9 however):

Installing theme and wallpaper patch for 9front rio:

install rio-themes

; bind -ac /dist/plan9front /

; cd /sys/src/cmd/rio

; hget https://ftrv.se/_/9/patches/rio-themes.patch | patch -p5

; mk install

; reboot # or otherwise restart rio

write a theme, eg. in $home/lib/theme/rio.theme

ps: wallpaper must be in the plan 9 image format,

eg. jpg -9t <pic_1920x1080.jpg >$home/lib/1920x1080.img

rioback /usr/glenda/lib/1920x1080.img

back f1f1f1

high cccccc

border 999999

text 000000

htext 000000

title 000000

ltitle bcbcbc

hold 000099

lhold 005dbb

palehold 4993dd

paletext 6f6f6f

size 000000

menubar 448844

menuback eaffea

menuhigh 448844

menubord 88cc88

menutext 000000

menuhtext eaffea

use your theme (add it to riostart if you want)

; window 'cat $home/lib/theme/rio.theme > /mnt/wsys/theme;

 sleep 0.5;

 grep softscreen /dev/vgactl >> /dev/vgactl;

 echo hwblank off >> /dev/vgactl'

Internationalization

For better or worse, computing is an English affair. I'm sorry, but if you want to

program and use any operating system in any professional capacity, you need to

learn the English language. Nearly all vital documentation, and any defining works

in programming, computer science and computing history, will be written in this

language. I don't mean to be unsympathetic here, I am not a native English

speaker myself, so I know that this can be a tall order, but that's just the way it

is.

Having that said, technically speaking, Plan 9 does have very good international‐

ization support. Of course, all of the instructions given during installation, and all

of the available documentation is in English. But the system itself supports most

languages as everything is Unicode throughout.* So as long as you have the neces‐

sary fonts installed, you can read and write any language (well, languages that

aren't written from left to right will require some work). UTF-8 was in fact in‐

vented by the Plan 9 developers! For example, to write the Northern Norwegian

sentence "Æ e i Å æ å" (yes, this is a real sentence*), type Alt+Shift+a+e e i

Alt+o+Shift+a Alt+a+e Alt+o+a. A list of the international characters available with

the Alt key combo, can be found in /lib/keyboard. So to find out how to write a

smiley face in Plan 9, just type grep ☺ /lib/keyboard (naturally the ☺ can be

copy pasted), and it will print:

263A :) ☺ smiley face

That is, type Alt+:+) to produce the Unicode character 0x263A, aka a smiley face.

You can change the default US qwerty layout with the kbmap command, right click

on the layout you want, then type q to quit. To set this change permanently:

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html

change dvorak to whatever layout you prefer

setting layout in 9front:

; 9fs 9fat

; echo 'kbmap=dvorak' >> /n/9fat/plan9.ini

setting layout in classic Plan 9:

; sam $home/lib/profile

add the following line somewhere near the top

; cp /sys/lib/kbmap/dvorak /dev/kbmap

User Management and Security

To add a new user called bob, that is a member of the email (upas) and admin

groups (adm for user administration, sys for access to system files), on a system us‐

ing the hjfs file system type:

add user to the file server

; echo newuser bob >> /srv/hjfs.cmd

; echo newuser upas +bob >> /srv/hjfs.cmd

; echo newuser adm +bob >> /srv/hjfs.cmd

; echo newuser sys +bob >> /srv/hjfs.cmd

add user to the auth server

; auth/keyfs

; auth/changeuser bob

; auth/enable bob

If you are using the cwfs file system, use cwfs.cmd instead of hjfs.cmd. If you are

using a classic Plan 9 system, use fscons, and the command uname rather then

newuser, but otherwise it's the same. The very first thing Bob needs to do when he

first logs in to the Plan 9 box, is to type /sys/lib/newuser. This will create an ini‐

tial home directory with basic files such as a lib/profile and a tmp directory. Why

doesn't the system do this by default? Consider it a security feature, users who

aren't able to type /sys/lib/newuser, have only limited access to the system in or‐

der to protect the other users. Btw, you may wish to add the new user to secstore

as well (see section 7.4.3.1 (https://fqa.9front.org/fqa7.html#7.4.3.1) in the fqa).

Security in Plan 9 is built around an astute observation; While it's the operating

systems responsibility to secure the digital world (ei. the network), it is your re‐

sponsibility, as a physical being, to provide physical security. Like me, being a

scrawny nerd, you may find that statement disconcerting. Relax, don't get buffed,

get smart: For example, if a Plan 9 network of multiple diskless terminals, is ser‐

viced by a single file server, that isn't also a CPU server; The only practical way to

compromise file security on that network, is to gain physical access to the file

server machine. The sysadmin can lock this machine behind a server room door,

behind a death-ray enhanced mutant shark pool, or whatever physical restraints

his evil boss may fancy.

The user who boot's a machine has physical access to it. This hostowner owns all

the resources of that machine, but how much power that gives him on the network

depends entirely on how the network is configured. A Plan 9 machine that isn't a

CPU server, cannot be logged into remotely, a machine that isn't a file server, can‐

not export its files, and a machine that isn't an auth server, cannot authenticate

remote transactions. In practice though, a 9front user will typically set up his lap‐

top as a self contained CPU+AUTH+File server, in which case the hostowner is

nearly as powerful as the Almighty root in UNIX. (although he must still show os‐

tensible respect for file permissions) Single-user "terminals" on the other hand,

where originally diskless, and do not export any resources whatsoever. Thus they

have nothing to secure and Plan 9 will let anyone login to such a machine without

a password. This is not ideal today, when a default Plan 9 installation provides a

"terminal" with local disk storage. There are a few ways to work around this issue:

1) Configure the system to run as a CPU+AUTH server, which does require a

password to login. 2) Configure the BIOS to set up a boot password. 3) 9front al‐

lows you to encrypt the harddisk, requiring a passphrase to log in (see section 4.4

https://fqa.9front.org/fqa7.html#7.4.3.1
https://fqa.9front.org/fqa7.html#7.4.3.1
https://fqa.9front.org/fqa7.html#7.4.3.1
https://fqa.9front.org/fqa7.html#7.4.3.1
https://fqa.9front.org/fqa7.html#7.4.3.1
https://fqa.9front.org/fqa7.html#7.4.3.1
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_cpu
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_cpu
https://fqa.9front.org/fqa4.html#4.4
https://fqa.9front.org/fqa4.html#4.4
https://fqa.9front.org/fqa4.html#4.4
https://fqa.9front.org/fqa4.html#4.4

(https://fqa.9front.org/fqa4.html#4.4) in the fqa).

To demonstrate some multiuser shenanigans:

UNIX friendly aliases

fn su{

 rcpu -u $*

}

fn chown{

 chgrp -u $*

}

; su bob # switch user on CPU server

...

ERROR ERROR ERROR # Oops, bobs profile is missconfigured

...

; echo allow >> /srv/hjfs.cmd # fs hostowner: allow chown

; chown glenda /usr/bob/lib/profile

; B /usr/bob/lib/profile # fix the problem

; chown bob /usr/bob/lib/profile

; su bob

Disk Management

There is no df command in Plan 9 for measuring disk usage, but you can get that

information in other ways. On an hjfs file system run this command: echo df >>

/srv/hjfs.cmd. On cwfs the method is a bit awkward: echo statw >> /srv/cwfs.cmd

&& cat /srv/cwfs.cmd, will give you a bunch of statistics, currently using 16 Kb file

system blocks (hit Del when you are done) What you probably want is the last

digit in the wmax line, which will tell you how much percentage of the disk you are

using (the cache line here is also important, the cache is only 1/5 the size of the

main storage area, but if it runs out of space - you will run into problems!). Here is

a crude df script for 9front that you may find useful:

https://fqa.9front.org/fqa4.html#4.4
https://fqa.9front.org/fqa4.html#4.4
https://fqa.9front.org/fqa4.html#4.4
https://fqa.9front.org/fqa4.html#4.4
https://fqa.9front.org/fqa4.html#4.4

#!/bin/rc

df - print disk usage on hjfs/cwfs

usage: df

if (test -f /srv/hjfs.cmd) {

 echo df >> /srv/hjfs.cmd

}

if not {

 echo statw >> /srv/cwfs.cmd

 dd -if /srv/cwfs.cmd -bs 1024 -count 21 -quiet 1 |

 grep wmax | sed 's/.*\+//'

}

I think the method is similar to this in classic Plan 9, but I am not exactly sure

how to do this (feel free to drop me a line if you know how, or detect any other

faults in my article). For individual files and folders you can of course use the

trusty old du command to measure their size. Here is a simple and handy script

that lists the files and folders in your current directory sorted by disk usage:

#!/bin/rc

dus - disk usage summary for current dir

usage: dus

du -s * | sort -nrk 1 | awk '{

 if ($1 > 1073741824) printf("%7.2f %s\t%s\n", $1/1073741824,

"Tb", $2)

 else if ($1 > 1048576) printf("%7.2f %s\t%s\n", $1/1048576,

"Gb", $2)

 else if ($1 > 1024) printf("%7.2f %s\t%s\n", $1/1024, "Mb",

$2)

 else printf("%7.2f %s\t%s\n", $1, "Kb", $2)

}'

For an example of how to format a USB stick with FAT32 (ei. a DOS partition)

and use it in Plan 9, see the section about USB sticks below. The process for cre‐

ating a Plan 9 partition, instead of FAT32, is fairly similar. Assuming the usb stick

is called sdUc59fd, here is how to format it with an hjfs file system:

; disk/fdisk -baw /dev/sdUc59fd/data

; disk/prep -bw -a fs /dev/sdUc59fd/plan9

; hjfs -r -f /dev/sdUc59fd/fs

; hjfs -n hjfsusb -f /dev/sdUc59fd/fs

; mount /srv/hjfsusb /n/hjfsusb

; touch /n/hjfsusb/anewfile

And here is how to do it using cwfs:

; disk/fdisk -baw /dev/sdUc59fd/data

; disk/prep -bw -a^(fscache fsworm other) /dev/sdUc59fd/plan9

; cwfs64x -n fsusb -f /dev/sdUc59fd/fscache -C -c

config: service cwfs

config: config /dev/sdUc59fd/fscache

config: noauth

config: filsys main c(/dev/sdUc59fd/fscache)(/dev/sdUc59fd/fsworm)

config: filsys dump o

config: filsys other (/dev/sdUc59fd/other)

config: ream other

config: ream main

config: end

; mount /srv/fsusb /n/fsusb

; touch /n/fsusb/anewfile

The above example is for 9front, as for classic Plan 9 systems, here is how you cre‐

ate a kfs file system:

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#memstick
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#memstick

; disk/fdisk -baw /dev/sdUc59fd/data

; disk/prep -a fs /dev/sdUc59fd/plan9

; disk/kfs -f /dev/sdUc59fd/fs

; mount -c /srv/kfs /n/kfs

; touch /n/kfs/anewfile

Backups

Plan 9 file systems all have snapshot capabilities, so as long as the file system itself

is in working order, you can restore damaged or lost data without much hassle. Of

course, there is a big if here: The file system can get damaged, and the machine it

runs on can get damaged, and the building it lies in can get damaged, and the

country it lies in can get damaged, and the world it lies in... you get the picture.

So even if you have a super sophisticated ultra safe file system with all the trim‐

mings, it is not safe! You should backup your data to an offsite location, preferably

two offsite locations: If an intruder compromises the data at one site, having two

backups lets you verify which data is accurate and which is corrupt.

The trick to migrating from the concept of backups to the practice of it, is two

fold. First, backups must be takes automatically. Doing backups manually ensures

that they don't get done. Secondly, only backing up essential files will dramatically

increase cost effectiveness. If you are an organized individual, just write a proto(2)

file for your important files, and schedule a regular mkfs(8) job with cron(8). I how‐

ever, am not an organized individual. My first problem is that I boot my laptop

only semi-regularly, so I need some easy way to schedule a job "at least" once a

day/week/month; If a weekly job hasn't been run for a week or more when I boot

my box, it needs to run again. Here is a simple script that accomplishes this:

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#version_control
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#version_control

#!/bin/rc

schedule - run commands at scheduled intervals

usage: schedule

depend: window schedule in $home/bin/rc/riostart

#

format: add commands to run in one of the following

files in $home/lib; daily, weakly, monthly.

set some defaults

rfork e

lock=$home/lib/lock

mkdir -p $lock

date=`{date}

datesec=`{date -n}

weekrun=Mon

daily=$home/lib/daily

weekly=$home/lib/weekly

monthly=$home/lib/monthly

check monthly scripts

if(test -f $monthly){

 lockfile=monthly_$date(2)^_$date(6)

 if(! test -f $lock/$lockfile){

 rm -f $lock/monthly_*

 touch $lock/$lockfile

 @{rc $monthly}

 }

}

check weekly scripts

if(test -f $weekly){

 lockfile=weekly_$datesec

 if(! test -f $lock/weekly_*) touch $lock/$lockfile

 oldlockfile=`{ls -p $lock/weekly_*}

 olddatesec=`{echo $oldlockfile | sed 's/weekly_//'}

 oldweeksec=`{echo $olddatesec + 604800 | bc}

 olddaysec=`{echo $olddatesec + 86400 | bc}

 # by default run weekly scripts on a certain day,

 # but make sure it runs at least once a week.

 if(~ $date(1) $weekrun || test $datesec -gt $oldweeksec){

 # also make sure it doesnt run twice in a single day

 if(test $datesec -gt $olddaysec){

 rm -f $lock/weekly_*

 touch $lock/$lockfile

 @{rc $weekly}

 }

 }

}

check daily scripts

if(test -f $daily){

 lockfile=daily_`{date -i}

 if(! test -f $lock/$lockfile){

 rm -f $lock/daily_*

 touch $lock/$lockfile

 @{rc $daily}

 }

}

respawn shell

rc

The script works by writing "lock" files with dates attached whenever a scheduled

job is executed. If these dates are older then a day/week/month (feel free to ex‐

pand the script to include quarterly/semily/yearly run jobs if you wish), the job is

executed again and the lock files are updated. Exactly how you want to run sched‐

ule depends on your needs and tastes, but one suggestion is to add window sched‐

ule to $home/bin/rc/riostart.

Now, to tackle my second problem: Just as time management in my life is disor‐

derly, so are my files. I know I have important stuff lying around somewhere that I

need to backup, but it's too much hassle finding out where. Doing a full backup

however is vastly inefficient, since my home directory contains some non-textual

nonsense. What I need is some quick way of saying backup everything, except this

and that. Here is one suggestion:

https://pspodcasting.net/dan/blog/2018/text_obsolete.html
https://pspodcasting.net/dan/blog/2018/text_obsolete.html

#!/bin/rc

nom - no match, print all files except those given

usage: nom files...

rfork ne

temp=/tmp/nom-$pid

fn sigexit{ rm -f $temp }

if(~ $* */*){

 echo 'nom quitting: can''t handle ''/''s.' >[1=2]

 exit slash

}

ls -d $* > $temp

ls | comm -23 - $temp

exit # force file cleanup

#!/bin/rc

backup - backup important files to offsite storage

usage: backup

rfork ne

backup semi-important files

mkdir -p /tmp/backup

fn copy{

 mkdir -p $2

 if (~ `{ls -ld $1} d*){

 mkdir $2/$1

 dircp $1 $2/$1

 }

 if not cp $1 $2

}

fn sigexit{ rm -rf /tmp/backup }

cd $home

for(file in `{nom bin doc games jw media pkg site tmp})

 copy $file /tmp/backup

cd $home/bin

for(file in `{nom 386 amd64})

 copy $file /tmp/backup/bin

cd $home/doc

for(file in `{nom books health os papers})

 copy $file /tmp/backup/doc

backup=9front-^`{date -i}^.tar.gz

tar czf /tmp/backup /tmp/$backup

cd /tmp

PS: The first whitespace in sed here is a tab

md5sum $backup | sed 's/ / /' >> CHECKSUM

copy backup to offsite locations

fn sshcopy{

 sshfs $1

 if(! test -d /n/ssh/backup) {

 echo Error: SSH failed!

 exit ssh

 }

 cp /tmp/$backup /n/ssh/backup

 cat /tmp/CHECKSUM >> /n/ssh/backup/CHECKSUM

}

sshcopy bkpserv1

sshcopy bkpserv2

rm -rf /tmp/$backup /tmp/backup

Now the script here is very much tailored to my own idiosyncratic needs, so don't

just copy paste it! For example, I omit some big directories in $home, such as media,

where I pub all of that non-textual mess, and site where I keep my web site. I do

copy bin and doc, but only parts of them. Clearly, such details, will not be relevant

for your setup. But I hope the example might inspire you to write a useful backup

utility yourself. With these tools in place, I can just add backup to $home/lib

/weekly, and a weekly ~10 Mb backup of my ~10 Gb* used diskspace is automati‐

cally taken, if I happen to boot my laptop at least once a week. Of course, it's still

useful to have a full tar czf $home /n/ssh/backup/9front-full.tgz backup lying

around, but running that command manually once or twice a year suffice for my

needs.

PS: If you happen to be a ZFS user, you may be yawning right about now. ZFS

does indeed have many fancy features that the Plan 9 file system lacks, but in my

humble opinion, the practicality of these features are overrated. For good data se‐

curity you need two offsite backups even with ZFS, and with such a setup, addi‐

tional data integrity and redundancy is somewhat overkill. Data compression, not

to mention deduplication, is even less relevant. With Terabyte harddisks on com‐

modity hardware nowadays we have infinite disk space, infinite +50% extra is still

infinite. Besides, if space were really such a premium, redundancy would be evil. In

any event, if you want self healing and all that jazz in Plan 9, just backup your

files to a UNIX machine using ZFS (or better jet, run Plan 9 virtually from a

UNIX machine using ZFS).

 ZFS primer for non-ZFS systems:

snapshots: yesterday

integrity: md5sum myfiles.tar.gz >> CHECKSUM

redundancy: cp myfiles.tar.gz /n/ssh/backup

compression: gzip myfile

encryption: auth/secstore -p myfile

replication: tar xzf myfiles.tar.gz

deduplication: <buy a disk man>

self healing: tel mysysadmin

Package Management

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_cpu
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_cpu
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#version_control
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#version_control
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#ssh
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#ssh
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_pass
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_pass

Plan 9 does not really have package management facilities in the sense that a

UNIX user would expect. The system is intended to be "fully-featured" (albeit

minimalistic) and few 3rd party software exists, those that do tend to be distrib‐

uted as plain source code requiring the user to compile them manually. It has been

toyed with some package management solutions for Plan 9, but for the most part

Plan 9 users usually just compile what they need by hand. Here are a few exam‐

ples to demonstrate what "package management" may entail in Plan 9:

PS: When compiling software in a Plan 9 terminal, remember to middle click the

window and select scroll. Otherwise the compilation will freeze once the output

has reached the bottom of the window (this is a "feature", not a bug).

Updating the 9front system - elaborately:

; sysupdate # download latest sources

; cd / # rebuild system

; . /sys/lib/rootstub

; cd /sys/src

; mk nuke # sometimes needed after library changes

; mk install

; mk clean

; cd /sys/man # optionally rebuild documentation

; mk

; cd /sys/doc

; mk

; mk html

; cd /sys/src/9/pc

; mk install # optionally rebuild (32-bit) kernel

; 9fs 9fat

; rm /n/9fat/9bootfat

; cp /386/9bootfat /n/9fat

; chmod +al /n/9fat/9bootfat

; cp /386/9pc /n/9fat

; sleep 10; reboot # if you have installed a new kernel

Of course, you do not need to reinstall the kernel and rebuild the docs for every

minor update, usually all you need to do is:

Updating the 9front system - quickly:

; sysupdate

; cd /sys/src

; mk install

Install xscreensaver package from the 9front extras:

; cd /tmp

; 9fs 9front # download package

; tar xzf /n/extra/src/xscr.tgz

; cd xscr # compile programs and install them

; mk

; for(f in 8.*){ mv $f $home/bin/$cputype/^`{echo $f | sed

's/8.//'} }

Install vim 7.1 port (old stuff):

; cd /tmp

; hget http://vmsplice.net/vim71src.tgz | gunzip -c | tar x

; cd vim71/src

; mk -f Make_plan9.mk install

Install the Bell-Labs port of perl (old stuff):

; 9fs sources # download iso and mount it

; bunzip2 < /n/sources/extra/perl.iso.bz2 > /tmp/perl.iso

; mount <{9660srv -s >[0=1]} /n/iso /tmp/perl.iso

; cp /n/iso/386/bin/perl $home/bin/386 # install the binary

Install lua from git.sr.ht:

; cd /tmp

; git/clone https://git.sr.ht/~kvik/lu9

; cd lu9

; mk pull

; mk install

; lu9 script.lua # or interactively: lu9 -i

Install Scheme from Empty Space (https://www.t3x.org/s9book/index.html):

; cd /tmp

; git/clone https://github.com/bakul/s9fes

; cd s9fes

; mk

; mk inst

; s9 # do some scheming

Recompile 9front to amd64 and install golang:

https://www.t3x.org/s9book/index.html
https://www.t3x.org/s9book/index.html
https://www.t3x.org/s9book/index.html
https://www.t3x.org/s9book/index.html
https://www.t3x.org/s9book/index.html
https://www.t3x.org/s9book/index.html

go will only work on amd64 architecture, so if you are

running 386, rebuilt to 64-bit first:

; cd /

; . /sys/lib/rootstub

; cd /sys/src

; objtype=amd64 mk install

; cd /sys/src/9/pc64 # build and install a 64-bit kernel

; mk install

; 9fs 9fat

; rm /n/9fat/9bootfat

; cp /386/9bootfat /n/9fat

; chmod +al /n/9fat/9bootfat

; cp /amd64/9pc64 /n/9fat

; sam /n/9fat/plan9.ini # make sure bootfile=9pc64 (not 9pc!)

; sleep 10; reboot # reboot to a 64-bit system, download

Go stuff

now, lets build go, we will bootstrap the latest version

of go from 9legacy, then use that to build the go source

(these instructions quickly get outdated):

; mkdir /sys/lib/go

; cd /sys/lib/go

; hget http://www.9legacy.org/download/go/go1.19.2-plan9-amd64-

bootstrap.tbz |

; bunzip2 -c | tar x

; hget https://golang.org/dl/go1.19.2.src.tar.gz |

; gunzip -c | tar x

; mv go amd64-1.19.2

; GOROOT_BOOTSTRAP=/sys/lib/go/go-plan9-amd64-bootstrap

; GOROOT=/sys/lib/go/amd64-1.19.2

; cd amd64-1.19.2/src

; make.rc

; bind -b $GOROOT/bin /bin

get some recent certificates

; hget https://curl.haxx.se/ca/cacert.pem > /sys/lib/tls/ca.pem

; go get golang.org/x/tools/cmd/godoc

to make the go environment permanent, add these

instructions to your $home/lib/profile

; GOROOT=/sys/lib/go/amd64-1.19.2

; bind -b $GOROOT/bin /bin

PS: In classic Plan 9, you would run replica/pull /dist/replica/network to get

the latest sources from Bell Labs, and 9fs sources to get the Bell Labs repository

of contributory software listed under /n/sources. Today however, these resources

are gone. You can still mount a snapshot of the contrib repository in 9legacy by

running the command srv -nqC tcp!9p.io sources /n/sources, the official 3rd

party software from Bell Labs will be in /n/sources/extra, while the repository of

contributors are in /n/sources/contrib. You can also manually mount the Bell

Labs wiki from 9p.io like so: srv -m 'net!9p.io!wiki' wiki /mnt/wiki, you can

then access the wiki by running acme /acme/wiki/guide, and follow the instructions

there (in 9front accessing these resources are done with: 9fs sources and 9fs

wiki). Note however that these old resources are in no way maintained, so they are

more of archaeological, then practical, interest. Concerning 9front specific scripts

and programs, many of them may work just fine in 9legacy, or any other classic

Plan 9 system. Feel free to try it out :)

File Management

The default "file manager" in Plan 9 is acme. If you run B path/mydir for instance,

the contents of mydir will be listed in acme. Right clicking on a directory here will

list its contents, clicking on a text file will open it up for editing, and clicking a

PDF or audio file will open it up in page or play, and so on. To do file operations,

just type in the commands and execute them, eg. type and middle click touch my‐

file to create myfile.

You can of course use the shell to manage your files, but there are a few differences

between UNIX and Plan 9 that might trip you up. For example, you don't have

rmdir, just use rm to delete your directories. Also there is no cp -r, instead you

have dircp that copies directories. So, if you need to copy mydir to otherpath, you

need to run mkdir otherpath/mydir; dircp mydir otherpath/mydir. If you only

want to copy the content of mydir, not the directory itself however, just run dircp

mydir otherpath. This may seem cumbersome to a UNIX user, but it does actually

have some benefits. Beyond a simpler implementation, the approach is unambigu‐

ous. I do not know how many times I have run cp -r mydir otherpath in UNIX,

when I actually meant to run cp -r mydir/* otherpath (ei. I only wanted to copy

the contents of mydir). In Plan 9 you don't have this problem.

Lastly, if you really want a GUI, there is a nice 3rd party file manager, called vdir

(http://shithub.us/phil9/vdir/HEAD/info.html). It works much like the acme file manager,

you right click on things to open them up.

Tips for UNIX Sysadmins

As the previous section illustrates, there are some fundamental differences between

UNIX utilities, and Plan 9 equivalents. A good UNIX to Plan 9 translation of vari‐

ous sysadmin commands are given here. You will note that many essential tools

that *nix graybeards take for granted, such as find or top, are not available in

Plan 9. And naturally, standard tools may not work as you expect either, the shell

http://shithub.us/phil9/vdir/HEAD/info.html
http://shithub.us/phil9/vdir/HEAD/info.html
http://shithub.us/phil9/vdir/HEAD/info.html
http://shithub.us/phil9/vdir/HEAD/info.html
http://shithub.us/phil9/vdir/HEAD/info.html
http://shithub.us/phil9/vdir/HEAD/info.html
http://shithub.us/phil9/vdir/HEAD/info.html
http://shithub.us/phil9/vdir/HEAD/info.html
http://shithub.us/phil9/vdir/HEAD/info.html
https://pspodcasting.net/dan/blog/2019/images/filemng.png
https://pspodcasting.net/dan/blog/2019/images/filemng.png
https://pspodcasting.net/dan/blog/2019/unix_to_plan9.html
https://pspodcasting.net/dan/blog/2019/unix_to_plan9.html

does not Tab auto-complete, cp does not copy recursively, ls does not columnize its

output, and so on. This can be very unsettling for seasoned UNIX veterans, but

don't panic, the Plan 9 way of doing things will make sense if you give it time.

Incidentally, walk (or even du -a) can be used as a lightweight alternative to find,

pstree, memory and winwatch should help you monitor your programs, Ctrl-f auto-

completes filenames in the shell, and as we have seen, dircp copies recursively and

lc lists files in multiple columns. You can usually reach your goal in Plan 9, you

just have to learn to walk a different path...

Quick CPU+AUTH+Qemu+Drawterm HOWTO

As mentioned at the onset, the focus of this guide is on using Plan 9 as a day-to-

day desktop, not installation and configuration. So I really didn't want to to do

this... but I suppose it's unavoidable. The problem here is that there are just so

many variables when setting up a Plan 9 CPU server. For example, do you run the

machine on bare metal or virtually, if virtually what virtual machine do you use, in

what operating system, if Linux, what distro... And we haven't even begun to con‐

sider the many different ways you can configure Plan 9 itself! What I present here

then is just a quick howto. I assume you want to install a Plan 9 CPU server in

qemu on a Linux, or other UNIX, machine, and that you go with all of the default

options during the installation of Plan 9, and that you say "y" to all yes or no

questions. I will not explain indepth the steps we take here, and I gloss over details

that are unimportant. But if you follow the instructions carefully, you will end up

with a drawterm connected to a Plan 9 CPU+AUTH server running in qemu, well...

at least on my machine ;)

To make this work, we need to use some painfully detailed qemu flags, so I recom‐

mend using the following wrapper script to launch qemu:

#!/bin/sh

9qemu: wrapper script for launching Plan 9 in qemu

usage: 9qemu disk [args...]

disk=$1 && shift

if [$(uname -s) = Linux]; then

 # non-linux systems may not have this

 kvm=-enable-kvm

fi

flags="-net nic,model=virtio,macaddr=52:54:00:12:34:56 \

 -net

user,hostfwd=tcp::17010-:17010,hostfwd=tcp::17019-:17019,\

 hostfwd=tcp::17020-:17020,hostfwd=tcp::12567-:567 \

 -device virtio-scsi-pci,id=scsi -device scsi-hd,drive=vd0 \

 -device sb16 -vga std -drive if=none,id=vd0,file=$disk"

qemu-system-x86_64 $kvm -m 2G $flags $*

9front

You have two file systems to choose from in 9front, generally, hjfs is simpler while

cwfs is faster. You have to use hjfs if your disk is smaller then around 30 Gb, but

if you prefer the default cwfs file system, follow the steps that are commented out:

Step 0: install qemu and drawterm (9front edition)

$ sudo apt install qemu # adjust to suit your system

$ firefox https://drawterm.9front.org # download drawterm

$ tar xzf drawterm-*.tar.gz

$ cd drawterm-*

$ CONF=linux386 make # adjust to suit your system

$ cp drawterm $HOME/bin

Step 1: install 9front and reboot

$ qemu-img create -f qcow2 9front.img 2G

#qemu-img create -f qcow2 9front.img 30G # cwfs needs a big disk!

$ 9qemu 9front.img -cdrom 9front.iso -boot d # use hjfs file

system!

$ 9qemu 9front.img

Step 2: configure boot

; 9fs 9fat

; sam /n/9fat/plan9.ini

change bootargs and add this:

bootargs=local!/dev/sd00/fs -m 448 -A -a tcp!*!564

nobootprompt=local!/dev/sd00/fs -m 448 -A -a tcp!*!564

#bootargs=local!/dev/sd00/fscache -a tcp!*!564

do not set nobootprompt yet for cwfs!

user=glenda

auth=10.0.2.15

cpu=10.0.2.15

authdom=virtual

service=cpu

Step 3: write nvram and add user

; auth/wrkey

authid: glenda

authdom: virtual

secstore key: ******

password: ******

; auth/keyfs

; auth/changeuser glenda

password: ******

post id: glenda

Step 4: configure network

; sam /lib/ndb/local

change last line and add this:

sys=cirno ether=525400123456 authdom=virtual auth=10.0.2.15

ip=10.0.2.15

ipnet=qemu ip=10.0.2.0 ipmask=255.255.255.0

 ipgw=10.0.2.2

 auth=10.0.2.15

 authdom=virtual

 fs=10.0.2.15

 cpu=10.0.2.15

 dns=8.8.8.8

Step 5: configure startup

; sam $home/lib/profile

add these lines at the end of the cpu section, before "case

con":

if (test -d /mnt/term/dev) {

 # cpu call from drawterm

 webfs

 plumber

 rio -i riostart

}

reboot

; sleep 5; fshalt -r

Step Z: enable auth services for cwfs, you only need to do this

if you

used the cwfs file system rather then hjfs during installation

(ps: you

may want to set nobootprompt in plan9.ini after this):

#bootargs:local!/dev/sd00/fscache -c

#config: noauth

#config: noauth

#config: end

Connecting to the server with drawterm:

$ drawterm -a 'tcp!localhost!12567' -s localhost -h localhost -u

glenda

9legacy

As you will see, setting up a 9legacy CPU+AUTH server is notably different from

9front. Classic Plan 9 has also a few issues with qemu, first of all, Plan 9 from Bell

Labs does not recognize the harddisk with this setup, although 9legacy does. The

fshalt script in the original Plan 9 system does not work right in qemu, which is

why we make our own halt script in this example. Finally, graphics do not work

with this setup. This isn't a huge deal (unless you hate ed), since we can connect

to the CPU server with a graphical drawterm once things have been configured.

However, if you just want to quickly install 9legacy and play around in the desktop

without drawterm, run something like this instead: qemu-systex-x86_64 -m 2G -hda

9legacy.img PS: To avoid a naming conflict with the 9front drawterm, we call the

original version of drawterm "9drawterm".

Step 0: install qemu and drawterm (original plan9 edition)

$ sudo apt install qemu # adjust to suit your system

$ firefox https://github.com/9fans/drawterm # download drawterm

$ unzip drawterm-master.zip

$ cd drawterm-master

$ CONF=unix make

$ cp drawterm $HOME/bin/9drawterm

Step 1: install 9legacy and reboot

$ qemu-img create -f qcow2 9legacy.img 2G

$ 9qemu 9legacy.img -cdrom 9legacy.iso -boot d

PS: choose /dev/sdD0/data as the distribution source, type exit

at the

/% prompt, and choose plan9 as the boot method.

$ 9qemu 9legacy.img

Step 2: Do some initial configurations

; echo uname adm +glenda >>/srv/fscons

; cp /adm/timezone/GMT /adm/timezone/local # adjust to suit your

needs

; mv /cfg/example /cfg/gnot

; echo ip/ipconfig >> /cfg/gnot/cpurc

; echo aux/listen -q -t /rc/bin/service.auth -d /rc/bin/service

tcp >> /cfg/gnot/cpustart

; mv /rc/bin/service.auth/authsrv.tcp567 /rc/bin/service.auth

/tcp567

; echo fsys main create /active/cron/glenda glenda glenda d775

>>/srv/fscons

; echo fsys main create /active/sys/log/cron glenda glenda a664

>>/srv/fscons

; ed /rc/bin/cpurc

g/^# auth/s/# (auth.+)/\1/

w

q

Step 3: configure network

; ed /lib/ndb/local

$

a

sys=gnot ether=525400123456 authdom=virtual auth=10.0.2.15

ip=10.0.2.15

ipnet=qemu ip=10.0.2.0 ipmask=255.255.255.0

 ipgw=10.0.2.2

 auth=10.0.2.15

 authdom=virtual

 fs=10.0.2.15

 cpu=10.0.2.15

 dns=8.8.8.8

.

w

q

; ed /lib/ndb/auth

$

a

hostid=glenda

 uid=!sys uid=!adm uid=*

.

w

q

Step 4: rebuild kernel

; cd /sys/src/9/pc

; mk 'CONF=pccpuf'

; 9fat:

; cp 9pccpuf /n/9fat

; ed /n/9fat/plan9.ini

/9pcf/s/9pcf/9pccpuf/

w

q

Step 5: Setup nvram and users

; auth/wrkey

authid: glenda

authdom: virtual

password: ******

; auth/keyfs

; auth/changeuser glenda

password: ******

post id: glenda

Step 6: Halt system and reboot

PS: the classic fshalt script doesn't work in qemu

; ed /rc/bin/halt

a

#!/bin/rc

echo fsys main sync >>/srv/fscons

sleep 5

echo Its now safe to turn off your computer

echo fsys main halt >>/srv/fscons

.

w

q

; chmod +x /rc/bin/halt

; halt

click Machine -> Reset in qemu when its safe to reboot

Connecting to the server with (the original) drawterm:

$ 9drawterm -a 'tcp!localhost!12567' -s localhost -c localhost -u

glenda

CPU+Rio desktop

By default a CPU server in Plan 9 does not run a graphical desktop, the original

intention was that this machine would service a number of diskless single-user re‐

mote desktops ("terminals") on the network. If you set up your laptop as a self

contained CPU+AUTH server however, you almost certainly want to use it inter‐

actively! To do so, you can investigate the difference between /bin/termrc and

/bin/cpurc, the scripts that configure the system to run as either a "terminal" or a

CPU server. In 9front for instance, you can add this to /cfg/<mymachine>/cpustart

to enable a graphical desktop on the CPU server <mymachine>:

aux/realemu

aux/vga -m vesa -l 1600x900x32 # screen dependent

bind -a '#m' /dev

aux/mouse ps2 # mouse dependent

for(i in v m i f L A) # add extra devices

 bind -a '#'^$i /dev >/dev/null >[2=1]

rc $home/lib/profile # regular user setup

For 9legacy the specifics are a little different, although you use the same method.

It is a mute point however, since a 9legacy CPU server cannot run graphics in a

virtual machine (in my experiments at least), and it is unlikely that you'll be able

to run such a system on bare metal.

CPU+PXE terminals

Personal computing, and other fads, aside, it is possible to run a Plan 9 network

with multiple diskless workstations, as God intended. With minor tweaks you can

follow the above instructions, and install a CPU+AUTH+File server on real hard‐

ware. Once that is up and running, you only need a few additional tweaks to pxe

boot diskless workstations. First, enable the dhcp and tftp daemons on the server,

by adding these lines to /cfg/<mymachine>/cpurc:

ip/dhcpd

ip/tftpd

Then configure the network to use these services, by adding the following lines in

the ipnet tuple in /lib/ndb/local:

...

ipnet=qemu ip=10.0.2.0 ipmask 255.255.255.0

 ...

dns=10.0.2.15

dnsdomain=qemu

tftp=10.0.2.15

add a line for each pxe booted client

sys=term1 dom=term1.qemu ether=8c1645bac636 ip=10.0.2.101

bootf=/386/9bootpxe

...

We use the authdom and dnsdomain "qemu" here, which is a rather daft name if we

intend to a physical installation. It doesn't actually matter what label we give it

though, as long as it uniquely identifies the auth server. The ether line here is the

MAC address of the diskless workstation we want to pxe boot. Finally, we must

provide a plan9.ini file for our client in /cfg/pxe/<MAC address> (/cfg/pxe

/8c1645bac636 in our case):

bootfile=/386/9pc

bootargs=tls

nobootprompt=tls

auth=10.0.2.15

fs=10.0.2.15

mouseport=ps2intellimouse

monitor=vesa

vgasize=1920x1080x32

*acpi=1

user=dan

If we now reboot our server, connect an ethernet cable to the client and configure

its BIOS to boot via the network, everything should work fine (if not, section 6.7

(https://fqa.9front.org/fqa6.html#6.7) in the 9front fqa, might provide some help). Of

course we can mangle our network further in infinite ways: We could run the CPU,

AUTH and File server on separate machines, and we can have more then one

CPU/File server. We could also do all of this virtually, or a mix of virtual and bare

metal configurations, including using UNIX as an emulated 9P server. Feel free to

experiment!

Automation

What is the fundamental value of a computer? However controversial it may be to

say so, it is not watching skaters trip over themselves on Youtube, or emailing cute

cat photos to your colleagues. The fundamental value of a computer is automation.

Just as a tractor allows you to plow a field with much less effort then a shovel

would, so a computer allows you to do your monthly accounting with much less eff‐

ffort then pen and paper. So the question of how to use a computer efficiently and

wisely, boils down to programming it to do your chores. Now I know what you are

thinking, but relax. There is "programming", and then there is programming, we

are only going to cover the first topic here, and leave the latter for the profession‐

als ;)

Shell Scripting

Plan 9's shell, rc is heavily inspired by the classic UNIX shell, sh (the Bourne

Shell). Nevertheless it is a complete rewrite and behaves quite differently. One ob‐

vious difference is the syntax. The original UNIX shell was designed to mimic the

syntax of a user-friendly programming language called ALGOL. In retrospect this

was undeniably a mistake. rc however mimics the C syntax, which makes a lot

more sense, since this is the programming language used elsewhere in the system.

Another big difference is that sh treats everything as a string, support for arrays

https://fqa.9front.org/fqa6.html#6.7
https://fqa.9front.org/fqa6.html#6.7
https://fqa.9front.org/fqa6.html#6.7
https://fqa.9front.org/fqa6.html#6.7
https://fqa.9front.org/fqa6.html#6.7
https://fqa.9front.org/fqa6.html#6.7
https://fqa.9front.org/fqa6.html#6.7
https://fqa.9front.org/fqa6.html#6.7
https://fqa.9front.org/fqa6.html#6.7

were added later. This means that correct quoting is super important in the UNIX

shell, and arrays are clunky. The Plan 9 shell on the other hand treats everything

as a list, so arrays are seamless. Quoting is also simpler since there is only one es‐

cape character (single quotes).

You will find several rc scripts in this article that demonstrate it's use, but here is

a short list of sh to rc translations (like C, curly brackets in rc are somewhat op‐

tional):

UNIX SHELL PLAN 9 SHELL

mesg="Hello World" mesg=(Hello World)

echo "$mesg's!" echo $"mesg'''s!'

echo ${a}string echo $"a^string

rm *.{mp3,ogg} rm *.^(mp3 ogg)

echo date: `date` echo date: `{date}

list=(`ls`) list=`{ls}

echo 1st: ${list[0]} echo 1st: $list(1)

echo all: ${list[@]} echo all: $list

echo num: ${#list[@]} echo num: $#list

echo 2>/dev/null echo >[2]/dev/null

echo >/dev/null 2>&1 echo >/dev/null >[2=1]

if ["$1" = yes]; then if(~ $1 yes){

 echo hi echo hi

else } if not {

 echo bye && exit 1 echo bye && exit bye

fi }

echo err: $? pid: $$ echo err: $status pid: $pid

while true; do while(){

 (subproc) @{subproc}

done }

for i in "$@"; do for(i in $*){

 echo ${i%.*} echo $i | sed 's/\..*//'

 echo $(($i + 1)) echo $i + 1 | hoc

 let j++ j=`{echo $j + 1 | hoc}

done }

case in "$@"; do switch($*){

 a) echo Abe case a

 ;; echo Abe

 b) echo Bob case b

 ;; echo Bob

 *) echo Who? case *

 ;; echo Who?

esac }

alias l='ls -l' fn l{ ls -l }

f(){ fn f{

 echo Funky! echo Funky!

} }

Many short scripts in this article are written as functions, this is because I usually

add them to a custom alias file, as mentioned in the configuring startup and shut‐

down section. But you can easily rewrite these functions as standalone shell scripts

if you want.

Rio Scripting

The desktop in Plan 9 is fully scriptable, and in true UNIX fashion, you control it

by using a file interface.

For example, if you only have one window open, and run the command ls

/dev/wsys/wsys, you should see something similar to this: /mnt/wsys/wsys/1/ This

tells you that there is only one window currently open, which has the ID 1.

Now run the command echo new sam > /mnt/wsys/wctl, this should open up a new

sam window. If you ls the /mnt/wsys/wsys directory again, you should see two win‐

dows listed. You can now delete the sam window with the command echo delete >

/mnt/wsys/wsys/2/wctl, assuming that your sam window had the ID 2. To resize the

first terminal window, either run echo resize -r 0 0 1360 1080 > /mnt/wsys

/wsys/1/wctl, or more simply echo resize -r 0 0 1360 1080 > /dev/wctl.

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_init
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_init
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_init
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_init

• /dev/wctl window control file for the current window

• /mnt/wsys/wctl window control file for the system

• /mnt/wsys/wsys/n/wctl window control file for window n

rio also provides other files that you can use to control its interface, some of these

are discussed in the manipulating text in the terminal and taking a screenshot sec‐

tions. For all of these files, the ones in /dev refer to your current window, use

/mnt/wsys/wsys/n/ to manipulate another window. Here is the full list of files that

rio provides:

• cons the console

• consctl the console control file

• kbd raw keyboard events

• cursor appearance of the mouse cursor

• label the window label

• mouse raw mouse input

• screen image of the screen

• snarf the snarf buffer, or "clipboard"

• text copy of the window text

• wctl the window control file

• wdir the current working directory

• winid the window ID number

• window image of the window

• wsys a subdirectory containing the other windows in rio

The fact that the window manager can be easily scripted with standard shell tools

gives it enormous flexibility. Just a quick example to wet your appetite: The fol‐

lowing command will print the window ID number for each window on the screen:

for (win in /mnt/wsys/wsys/*) cat $win/winid > $win/cons (if you only want to

print ID's on visible windows use this command: for (win in /mnt/wsys/wsys/*) if

(dd -if $win/wctl -bs 128 -count 1 -quiet 1 | grep -s visible) cat $win/winid

> $win/cons) PS: If you just want to quickly get the window id of some specific ap‐

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#text
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#text
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#screenshot
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#screenshot

plication, say acme, you can just grep for it: grep acme /mnt/wsys/wsys/*/label.

Scrambling and Unscrambling a Rio Screen

As mentioned in the manipulating text section, text written to the system console

will appear directly on your screen. This can be seriously annoying, especially if

you have buggy hardware, which can make the kernel spam error messages that

clutter upp your screen. To automatically ignore all such messages, you can add

this line: window -hide -scroll cat /dev/kprint to $home/bin/rc/riostart. You

may also find the following script helpful, it basically redraws the active rio win‐

dows, and thus unscrambles the screen:

#!/bin/rc

unscramble - clear up a garbled rio screen

usage: unscramble

rfork e

screensize=(`{echo $vgasize | sed 's/x/ /g'})

window -r 0 0 $screensize(1) $screensize(2) exit

for (win in /mnt/wsys/wsys/*) {

 if(dd -if $win/wctl -bs 128 -count 1 -quiet 1 | grep -s

visible){

 echo hide > $win/wctl

 echo unhide > $win/wctl

 }

}

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#text
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#text
https://pspodcasting.net/dan/blog/2019/images/scramble.png
https://pspodcasting.net/dan/blog/2019/images/scramble.png

Of course if you happen to be a weird cookie such as myself, you may actually en‐

joy scrambling the screen on purpose. We have already seen examples of how this

feature provides an easy notification mechanism, but you can abuse it in other

ways as well. For instance, I have a bat script that draws an ASCII bat signal on

the system console and plays the batman theme song. It totally messes up the dis‐

play, and is a nice facepalmer if I happen to mistype batt, mentioned in the bat‐

tery monitoring section above. Here is another, more "useful" example. The script

draws a fast moving fullscreen stats display, and then garbles it up at regular in‐

tervals. I find it sufficiently newb repellent to work as a de facto screen locker. A

non-Plan 9 user (aka everyone) who sees such a screen, will assume that the com‐

puter is horribly broken somehow and refuse to touch it with a ten foot pole. Of

course, once you delete the stats window everything will return back to normal.

#!/bin/rc

scramble - garbles up a rio screen

usage: scramble

rfork e

fn sigexit{ kill stats | rc }

screensize=(`{echo $vgasize | sed 's/x/ /g'})

window -r 0 0 $screensize(1) $screensize(2) stats -T 0.01 -cflmsz

&

while(sleep 3){

 if (! ps | grep -s stats) exit

 dd -if /dev/random -of '#c/cons' -bs 1024 -count 1 -quiet 1

}

https://pspodcasting.net/dan/blog/2019/images/scramble.png
https://pspodcasting.net/dan/blog/2019/images/scramble.png
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadm_battery
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadm_battery
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadm_battery
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadm_battery

max - Maximizing Windows

The following script lets you maximize windows in various ways, eg. max will make

your current window fullscreen, and max u will restore its previous dimensions. max

r 2 will place window with ID 2 on the right half of the screen, and so on, enjoy!

#!/bin/rc

max - maximize windows

usage: max [orientation] [winid]

#

orientation can be: f (fullscreen), l (left), r (right), t

(top), b (bottom),

tl (top-left), tr (top-right), bl (bottom-left), br (bottom-

right) or u

(unmaximize), default is fullscreen.

#

bugs: if you are maximizing another window, orientation is

required

unmaximize is only useful right after maximizing a window.

set some defaults

screensize=(0 0 `{echo $vgasize | awk -Fx '{ print $1, $2 }'})

if(~ $#windowsize 0)

 windowsize=`{dd -if /dev/window -bs 1 -count 70 -quiet 1 |

 awk '{ print $2, $3, $4, $5}'}

window=/dev/wctl

if(~ $#* 0) echo resize -r $screensize > $window

if(~ $#* 2) window=/mnt/wsys/wsys/$2/wctl

if(test $#* -gt 2){

 echo usage: max [orientation] [winid] >[1=2]

 exit

}

maximize window

echo current > $window

switch $1 {

case f

 echo resize -r $screensize > $window

case l

 echo resize -r $screensize |

 awk '{ printf("%s %s %d %d %d %d", $1, $2, $3, $4, $5/2, $6)

}' > $window

case r

 echo resize -r $screensize |

 awk '{ printf("%s %s %d %d %d %d", $1, $2, $5/2, $4, $5, $6)

}' > $window

case t

 echo resize -r $screensize |

 awk '{ printf("%s %s %d %d %d %d", $1, $2, $3, $4, $5, $6/2)

}' > $window

case b

 echo resize -r $screensize |

 awk '{ printf("%s %s %d %d %d %d", $1, $2, $3, $6/2, $5, $6)

}' > $window

case tl

 echo resize -r $screensize |

 awk '{ printf("%s %s %d %d %d %d", $1, $2, $3, $4, $5/2, $6/2)

}' > $window

case tr

 echo resize -r $screensize |

 awk '{ printf("%s %s %d %d %d %d", $1, $2, $5/2, $4, $5, $6/2)

}' > $window

case bl

 echo resize -r $screensize |

 awk '{ printf("%s %s %d %d %d %d", $1, $2, $3, $6/2, $5/2, $6)

}' > $window

case br

 echo resize -r $screensize |

 awk '{ printf("%s %s %d %d %d %d", $1, $2, $5/2, $6/2, $5, $6)

}' > $window

case u

 echo resize -r $windowsize > $window

 windowsize=()

}

ws - Multiple Workspaces

This script provides a virtual workspace-like service for rio. You use it by typing

ws n, where n is an arbitrary workspace number. The script works by registering

which windows belongs to which "workspace", and then automatically hides or un‐

hides the correct windows as you "switch" between them. Of course this is only a

pseudo-virtual workspace, all the windows are still available in the rio menu, and

plumbing a file in one "workspace" may open the file in a different "workspace". I

recommend riow mentioned in the workspaces section above, for a better end user

experience, but the following script might provide some useful insights.

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#workspaces
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#workspaces

#!/bin/rc

ws - pseudo virtual workspaces for rio

usage: ws n

#

bugs: the ws workspaces are not isolated from each other, if you

need

that open a fullscreen window in each ws workspace and run

plumber followed by rio in it. even then rio is still

blissfully

unaware of such "workspaces".

set some defaults

rfork ne

tmp=/tmp/ws

winid=`{cat /dev/winid}

initialize 1st desktop on first run

if(! test -d $tmp){

 mkdir -p $tmp

 touch $tmp/1

 echo 1 > $tmp/currentws

 ls -np /mnt/wsys/wsys > $tmp/`{cat $tmp/currentws}

}

update window lists

ls -np /mnt/wsys/wsys > $tmp/riowindows

cat $tmp/[0-9]* | sort -n > $tmp/wswindows

comm -23 $tmp/riowindows $tmp/wswindows >> $tmp/`{cat

$tmp/currentws}

for(i in `{comm -13 $tmp/riowindows $tmp/wswindows}){

 for(w in $tmp/[0-9]*) sed '/^'$i'$/d' $w > $tmp/TMP && mv

$tmp/TMP $w

}

currentws=`{cat $tmp/currentws}

no args: echo current ws (after updating windows) and exit

if(~ $#* 0){ echo $currentws && exit }

touch $tmp/$1

switch desktop

if(~ $1 $currentws){ echo this is workspace $1 && exit }

for(i in `{cat $tmp/`{cat $tmp/currentws} | sed '/^'$winid'$/d' })

 echo hide > /mnt/wsys/wsys/$i^/wctl

echo $1 > $tmp/currentws

for(i in `{cat $tmp/`{cat $tmp/currentws}}) echo unhide >

/mnt/wsys/wsys/$i^/wctl

echo hide > /mnt/wsys/wsys/$winid^/wctl

tile - Tiling Window Manager

tile will auto arrange your windows in a tiling fashion. The algorithm is simple,

place one window on the left half of the screen, then carve up the right half in even

slices for the remaining windows. The script is intentionally basic, so feel free to

expand or adjust it to suit your own needs.

#!/bin/rc

tile - tile windows

usage: tile

gather some information

rfork e

screensize=(0 0 `{echo $vgasize | awk -Fx '{print $1, $2}'})

windows=`{for (win in /mnt/wsys/wsys/*)

 if(dd -if $win/wctl -bs 128 -count 1 -quiet 1|grep -s visible)

 echo `{basename $win}

}

fn left{awk '{printf("%s %s %d %d %d %d",$1,$2, 0, 0,$5/2,$6

)}'}

fn right{awk '{printf("%s %s %d %d %d %d",$1,$2,$5/2,'$b',$5,

'$e')}'}

auto tile windows

if(~ $#windows 1)

 echo resize -r $screensize > /mnt/wsys/wsys/$windows/wctl

if not {

 echo current > /mnt/wsys/wsys/$windows(1)^/wctl

 echo resize -r $screensize | left > /mnt/wsys

/wsys/$windows(1)^/wctl

 windows=`{echo $windows | sed 's/^[^]+ //'} # shift

windows

 step=`{ echo $screensize(4) / $#windows | bc }

 b=0; e=$step # begin, end

 for(i in $windows){

 echo current > /mnt/wsys/wsys/$i/wctl

 echo resize -r $screensize | right > /mnt/wsys/wsys/$i

/wctl

 b=`{ echo $b + $step | bc }

 e=`{ echo $e + $step | bc }

 }

}

Acme Scripting

In the above section several window manager scripts are demonstrated, but if you

middle click tile, or any of the other window manager scripts, in acme, nothing

will happen. The reason for this is that the namespace of a terminal window, and

acme, are different. If you middle click win and look around in /dev and /mnt you

will see that these directories have different contents then the same directories in a

regular terminal. But don't fret, you can ask acme to run a command using the

namespace of the shell that invoked it with the Local command. So middle clicking

Local tile will tile your rio windows just fine (to "middle click" two words you

need to middle click and drag to select the text).

Another way to do this, if you plan on using tile a lot in acme, is to write a wrap‐

per script for it in /acme/bin/Tile:

#!/bin/rc

Tile - wrapper for tile

tile $*

As you can see, this is just an ordinary shell script. The only difference is that

while acme binds /acme/bin to /bin, other programs don't, and hence files in

/acme/bin are specific to this programs namespace. When we execute tile here it

will have a regular shell namespace, and thus work as expected. Note that our acme

wrapper has a capital T, to avoid a naming conflict with our rio tiling script.

There are other simple shell scripts you may want to add to /acme/bin. In our in‐

troductory section on acme, we listed several examples of how you can do basic

text editing operations using external tools. It is easy to make acme commands out

of these examples, by adding shell scripts for them in /acme/bin. For example, we

could write the following t+ and t- scripts, to indent and unindent text:

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#acme
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#acme

#!/bin/rc

t+ - indent text

sed 's/^/ /'

#!/bin/rc

t- - unindent text

sed 's/^ //'

We can now indent lines in acme by highlighting (left click and drag) the text and

pipe it to our new script by middle clicking |t+. Naturally we can just as easily

write commands for commenting and uncommenting text, for adding and removing

line numbers to a file, for upper and lower casing text, for obfuscating text with

rot13, and so on. But the real fun stars when you begin to script acme itself! Like

rio, acme can be fully controlled by writing plain text to a set of control files. Lets

look at a couple of quick examples:

Coffee - Chill ASCII Animations

Suppose we have created a series of ASCII coffee mugs in a directory, our first art‐

work, $home/lib/animation/coffee/1, may look something like this:

 (

) (

 () (

 ,---------.__

 | | |

 | | |

 | | |

 | |=='

 | |

 `---------'

 COFFEE BREAK

The other files I will leave to your imagination, but the point is that when they are

displayed in rapid order, an ASCII animation of a steaming coffee mug will be the

result. In a rio terminal, we could write such an animation script like this:

#!/bin/rc

coffee - print ASCII animation of steaming coffee mug

usage: coffee

play $home/music/samples/coffee.mp3 >[2]/dev/null &

while()

 for(i in $home/lib/animation/coffee/*)

 > /dev/text && cat $i && sleep 1

But this will not work in an acme win terminal, since we don't have /dev/text in

our namespace. To clear the text in an acme window we need to write the com‐

mand Edit ,d (that is :%d for all you vi users out there), select this command,

then click it with our middle mouse button. Can we do this programmatically?

Sure:

#!/bin/rc

echo -n Edit ,d > /dev/acme/body

echo -n /Edit ,d/ > /dev/acme/addr

cat /dev/acme/addr | awk '{ print "MX", $1, $2 }' > /dev/acme

/event

This essentially follows the three steps mentioned above. The last line is the most

cryptic. What we are doing here is reading the address (the marked text), which

returns information like the beginning and end positions, which we then feed to

awk. We also append the "MX" command to event, which tells acme that a middle

mouse button was "clicked" on this region of text.

Lets call this script /acme/bin/clear, and lets add a script in $home/bin/rc/clear

that clears a rio terminal:

#!/bin/rc

clear - clear up a rio terminal

usage: clear (see also /acme/bin/clear)

> /dev/text

We can now adjust our coffee animation script so that it works in both the rio ter‐

minal and in acme's win terminal:

while()

 for(i in $home/lib/animation/coffee/*)

 clear && cat $i && sleep 1

Slides - Acme Presentation Show

Here is another simple example. Suppose we have a directory of files called 1, 2, 3...

each providing a slide in a textual slide show. We could open the first slide by

right clicking 1. Then manually editing the filename to 2, type Get and middle click

it. Annoyingly we would need to click Get twice, since acme will warn us that load‐

ing this file will change the contents of our window. Lets automates this:

#!/bin/rc

Slide[-+] - go back and forwards in a slide show

usage: Slide[-+]

#

bugs: slides must be named 1, 2, 3...

to "install" the script copy it to /acme/bin/Slide^('' -

+)

(that is to /acme/bin/Slide{,-,+} in UNIX speak)

switch($0){

case *Slide

 ls `{pwd}

 exit

case *Slide+

 page=`{echo `{basename $%} + 1 | hoc}

 if(! test -f $page) exit

case *Slide-

 page=`{echo `{basename $%} - 1 | hoc}

 if(! test -f $page) exit

case *

 echo Error: bogus program name!

 exit wrongname

}

echo 'name '`{pwd}^/$page'' > /mnt/acme/$winid/ctl

echo clean > /mnt/acme/$winid/ctl

echo get > /mnt/acme/$winid/ctl

To install this script copy it to /acme/bin/Slide and make it executable, then copy

this script to Slide+ and Slide- in the same location. If we now open up one of our

iterative slides in acme, we can middle click Slide+ to advance to the next slide,

Slide- to go back to the previous one, or Slide to list our slides. We can click

Slide+ or Slide- repeatedly, the slide show will stop once we reach the end, or the

beginning, respectively.

Our script contains a couple of special variables, $0 refer to the name of the pro‐

gram that is running. The behavior of our program will change depending on what

it's called, if it's called Slide+ it will advance the slide, if it's called Slide- it will

retreat the slide, and so on. $% is a variable particular to acme, it refers to the file‐

name in the tag of the current acme window. The last three lines are simple

enough, change the filename, tell acme not to bother us about contents changing,

and finally load the new file.

Chat - Simple Peer to Peer Chatting

Long before the days of modern chat protocols, such as IRC, the ancient UNIX

systems came with a simple peer-to-peer chat program called write. This program

established a simple connection between two users, and just wrote whatever the

users had written verbatim to a common text window. The text would be garbled

if both users wrote simultaneously, so it was customary for the user who had initi‐

ated the conversation to write first, and end his input with (o), for "over". Then

the other user would reply, and end his input with (o). And finally, when the con‐

versation had run its course, a user would signal that he ended the conversation

with (oo), for "over and out".

Surprisingly enough, you will actually find this 50 year old program on most mod‐

ern UNIX boxes today, even though nobody uses it. Plan 9 however is a modern

operating system for the 90's, and thus do not include this archaic program. But if

you are feeling nostalgic, it's trivial to implement it:

; touch /usr/chat && chmod 666 /usr/chat

; tail -f /usr/chat &

; while(){ read >> /usr/chat }

An arbitrary number of users can write the same commands, and join the chat, re‐

mote Plan 9 users too, they just need to import the chat machines file system, and

they are good to go. Whatever people write to the file will be printed verbatim to

all that are viewing it. But this solution is awkward. For one, the UNIX write

command notified the user you wanted to talk to (in the increasingly unlikely

event that he worked on a text console), ours doesn't. And there are some other

rough edges besides. Surely we can write a nicer acme client for this? Let's start off

by implementing a simple notification system; we can do so in various ways, but

here is a quick suggestion:

https://pspodcasting.net/dan/blog/2018/console_desktop.html
https://pspodcasting.net/dan/blog/2018/console_desktop.html

; touch $home/lib/notify

; chmod 666 $home/lib/notify # allow everyone read/write access

; B $home/lib/profile

...

notify daemon (see statusmsg(8))

while(sleep 5){

 if(test -s $home/lib/notify)

 @{cat $home/lib/notify; sleep 5} | aux/statusmsg

 > $home/lib/notify

}&

usage: notify user message...

fn notify{

 recv=$1 && shift

 if(test -w /usr/$recv/lib/notify)

 echo $* >> /usr/$recv/lib/notify

}

miscellaneous oldschool commands

fn write{

 echo 'Use Chat in acme you Neanderthal!'

}

fn wall{

 for(recv in `{who}) notify $recv $*

}

fn mesg{

 if(~ $1 y) chmod 666 $home/lib/notify

 if(~ $1 n) chmod 644 $home/lib/notify

}

fn finger{

 whois $1

 for(file in /usr/$1/lib/^(plan project))

 if(test -f $file) cat $file

}

clean up old chat logs

rm -f $home/lib/chat

...

; reboot

With a notification mechanism in place, we can go ahead and write our acme Chat

client (we use the unintuitive variable $recv for our message receivers since $user is

already taken, it refers to your user). We'll implement it as two commands, Chat

for connecting to a chat session, and Reply for taking whatever we have written in

the tag line, and add it to the chat log.

#!/bin/rc

Chat - open a new chat window

usage: Chat user...

are we host or client?

rfork ne

if(~ $#* 0) exit

if(~ $#* 1 && test -f /usr/$1/lib/chat) host=$1

if not host=$user

log=/usr/$host/lib/chat

tag=' ['$host'] Reply '

if(~ $host $user){

 touch $log && chmod 666 $log

 for(recv in $*) notify $recv $user wants to Chat!

}

set up chat window

id=`{awk '{ print $1 }' /dev/new/ctl}

for(cmd in nomenu cleartag scratch) echo $cmd > /mnt/acme/$id/ctl

echo -n $"tag > /mnt/acme/$id/tag

tail -f $log > /mnt/acme/$id/body >[2]/dev/null

#!/bin/rc

Reply - write tag comments to a chat log

usage: Reply comment...

rfork ne

tag=`{sed 's/.*(\[.+\] Reply).*/\1/' /mnt/acme/$winid/tag}

host=`{echo $tag | sed 's/.*\[(.+)\].*/\1/'}

reply=`{sed 's/.*Reply //' /mnt/acme/$winid/tag}

echo $user: $reply >> /usr/$host/lib/chat

echo cleartag > /mnt/acme/$winid/ctl

echo ' '$"tag' ' > /mnt/acme/$winid/tag

The Chat program first determines if we are the chat host or not. (it's the host

that maintains the log and invites the guests) Next, the program spawns a new

acme window by reading /dev/new/ctl, the first argument returned when reading

this file, is the ID number of our newly spawned window. Then we write a few

commands to the control file of the new window, specifying that it should have an

empty tag line, and that acme shouldn't warn us if the content of this window

changes. Finally we add the hosts name and the command Reply to the tag line,

and start listening for changes to the chat log, which will be printed to the body of

our new window.

To write something in the chat window, just add your comment after the Reply

command in the blue tag line, and middle click Reply when you're done. The com‐

ment will be added to the chat log, prefixed with your user name, and the tag line

will be reset. Our command contains some odd regex, a (.+) sed argument would

be \(..*\) in UNIX. Plan 9 utilities all use the egrep like regexp(6) library for reg‐

ular expressions. Another detail: ' '$"tag' ' is ugly, but necessary to preserve

whitespace correctly.

Naturally, our Chat program is amazingly primitive; it's method of choosing a host

and cleaning up old chat logs is sloppy and it lacks many common features.

Compared to UNIX write however, it's actually quite advanced; We can chat with

an arbitrary amount of people over the secure network protocol 9P, the users are

identified and can write simultaneously without garbling the output, and we even

have a GUI notification mechanism. It's not a bad starting point, but feel free to

expand the code to suit your own needs :)

Play - An Acme Music Player

In the audio section below, we list some simple shell functions for pausing, resum‐

ing and skipping songs we are playing. We can easily write some of these as shell

scripts in $home/bin/rc, and thus also use them in acme (we could place them in

/acme/bin, if we only want to use them from acme):

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#audio
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#audio

#!/bin/rc

skip - skip a song that is playing

kill pcmconv | rc

#!/bin/rc

pause - pause a song that is playing

stop pcmconv | rc

#!/bin/rc

resume - resume a paused song

start pcmconv | rc

#!/bin/rc

vol - adjust audio volume

usage: vol n

echo master $1 $1 > /dev/volume

But these functions have two limitations, first they do not show you a visual

playlist, neither do they allow you to move freely back and forth in the playlist,

you can only skip the current song and play the next one on the list. If you think

about it though, que (a script mentioned later) has the needed functionality for it‐

erating over a playlist, and acme, being a text editor after all, has the needed func‐

tionality to visualize and edit such a list. It turns out that wrapping these things

into a cohesive GUI is very easy. Our acme Play command looks like this:

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_que
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_que

#!/bin/rc

Play - play a list of audio files

usage: Play

bugs: must run command in a window with audio filenames

echo cleartag > /mnt/acme/$winid/ctl

echo ' Play Quit Repeat ' > /mnt/acme/$winid/tag

while(){

 if(! test -d /mnt/acme/$winid) exit

 if(! grep -s '<--' /mnt/acme/$winid/body &&

 grep -s Norepeat /mnt/acme/$winid/tag) exit

 song=`{que $%}

 echo clean > /mnt/acme/$winid/ctl

 echo get > /mnt/acme/$winid/ctl

 play $song > /dev/null >[2=1]

}

To use this program, we must first write a playlist of audio files. We can easily

generate one, by running something like: du -a $home/music/creedence | awk

'/\.mp3/ { print $2 }' | sort > $home/lib/playlist/creedence Lets assume we

have opened a playlist in acme that looks like this:

/usr/glenda/music/creedence/01_pagan_baby.mp3

/usr/glenda/music/creedence/02_sailors_lament.mp3

/usr/glenda/music/creedence/03_chameleon.mp3

...

If we type Play now in the tag line and middle click it, it will add the commands

Quit and Repeat to our tag line, and start playing 01_pagan_baby.mp3, and then up‐

date our playlist, so that it looks like this:

/usr/glenda/music/creedence/01_pagan_baby.mp3

/usr/glenda/music/creedence/02_sailors_lament.mp3<--

/usr/glenda/music/creedence/03_chameleon.mp3

...

When 01_pagan_baby.mp3 is finished playing, 02_sailors_lament.mp3 will start play‐

ing, and the "<--" marker will move to 03_chameleon.mp3, the next song to be

played, and so on. This will continue indefinitely, repeating the playlist over and

over again. If we middle click Repeat however, it will change to Norepeat and the

playlist will only play once, then stop. (this relies on the convention that que re‐

moves the "<--" marker once the queue is finished) Finally, just Del'ing this win‐

dow does kind of work, but the last song will continue to play until it is finished.

To gracefully quit both this window and the audio playing, middle click Quit. Here

are our support scripts:

#!/bin/rc

Quit - quit Play

stop pcmconv | rc

echo clean > /mnt/acme/$winid/ctl

echo del > /mnt/acme/$winid/ctl

start pcmconv | rc

kill pcmconv | rc

#!/bin/rc

Repeat - toggle norepeat for Play

echo cleartag > /mnt/acme/$winid/ctl

echo ' Play Quit Norepeat ' > /mnt/acme/$winid/tag

#!/bin/rc

Norepeat - toggle repeat for Play

echo cleartag > /mnt/acme/$winid/ctl

echo ' Play Quit Repeat ' > /mnt/acme/$winid/tag

What is important to note here, is that the playlist is just a plain text file. So we

can freely add or remove lines here as we see fit, we can also freely move the "<--"

arrow to whatever line we want. After we have middle clicked Put to save our

changes, the next song to be played will be whatever line our arrow is at. So how

do we shuffle our playlist? If we use acme in Linux with Plan9Port, we can just

mark the playlist and middle click |shuf (or Edit ,|shuf if it's a very long

playlist). But Plan 9 has no shuf command! No matter, we'll just make one. This

crude solution should suffice for our needs:

#!/bin/rc

shuf - shuffle input lines

usage: shuf < input > output

ifs='

'

fn sigexit{ rm -f /tmp/shuf-$pid }

for(line in `{cat /fd/0}){

 for(i in 1 2 3) awk '{ printf("%d", substr($2,19)) }'

/dev/time

 echo @@@$line

} >> /tmp/shuf-$pid

sort -n /tmp/shuf-$pid | sed 's/^[0-9]+@@@//' > /fd/1

exit # force clean up

In this script we are using the last nanosecond of the computer clock to generate

some fairly random numbers. /fd/0, /fd/1 and /fd/2 are equivalent to /dev/stdin,

/dev/stdout and /dev/stderr in UNIX (and ifs equivalent to IFS naturally - Plan

9 is even more lower case oriented then UNIX). The last exit here is ugly, but

sometimes necessary to force the sigexit trap to work (Plan 9 pays homage to un‐

reliable UNIX signals).

We have only provided a handful of crude scripts in this section, but hopefully

they illustrate how easy it is to expand acme's capabilities using only a handful of

tiny shell scripts. Who needs a bloated graphical toolkit anyway, when you've got

acme!

Web Scripting

As mentioned elsewhere, Plan 9 networks are controlled through plain files. This

implementation is unusual, and you should read /sys/doc/net/net.ps to familiarize

yourself with the concept. As with the notion that a desktop is controlled by writ‐

ing text strings to files, this idea may seem bizarre or even amusing at first. But

any smirk you may have quickly fades as the rio scripting section describes how to

develop advanced desktop features with simple shell scripts (try enabling virtual

workspaces in Windows 7 with CMD!). I think the same will be true for web

scripting. Here is a fully-fledged telnet implementation just to wet your appetite:

#!/bin/rc

clonefile=/net/tcp/clone

<[4] $clonefile {

 netdir=`{basename -d $clonefile} ^ / ^ `{cat /fd/4}

 echo connect $1|$2 >$netdir/ctl || exit 'cannot connect'

 cat $netdir/data &

 cat >$netdir/data

}

9front Web Scripts

9front ships with the IRC client ircrc, the pastebin command webpaste, and the

hget and hpost commands. All of these programs are shell scripts. hget and hpost

are somewhat like wget and curl in UNIX, but they are only a hundred, and two

hundred, line shell scripts, respectively (in contrast wget and curl are 300,000 lines

of C each!). We will not print their source code here, but they are worth studying

if you plan on writing web scripts in Plan 9 yourself. As for webpaste it is just a

few lines long, and it is a good demonstration of how to transmit data to a web

service (it depends on hpost):

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#rio_scripting
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#rio_scripting

#!/bin/rc

if(~ $#* 0)

 file=/fd/0

if not

 file=$1

hpost -u http://okturing.com -p / a_body@file submit:submit

fake:fake a_func:add_post url: |

grep -e '\/body\"' |

sed 1q | sed 's/^.*href=\"//g; s/body\".*$/body/g'

PS: Classic Plan 9 does not include the above mentioned scripts.

ircrc is also about two hundred lines of code, and is well worth studying. But here

is a stripped down version to illustrate what is possible in Plan 9. It is a very

primitive IRC client that only supports a few IRC commands and hardcodes your

nick and channel, but it is a working IRC client nonetheless. And at under 70 lines

of shell that isn't bad at all:

#!/bin/rc

rfork ne

server=irc.oftc.net

port=6667

realname=myrealname

target='#cat-v'

netdir=()

nick=mynick

fn sighup {

 exit 'hang up'

}

fn sigint sigterm {

 if (! ~ $#netdir 0)

 echo QUIT : Leaving... > $netdir/data

}

fn mshift {

 shift

 echo $*

}

fn etime {

 date | awk '{print $4}' | awk -F ':' '{print "[" $1 ":" $2

"]"}'

}

fn work {

 echo USER $user foo bar :$realname > $netdir/data

 echo NICK $nick > $netdir/data

 echo PRIVMSG 'nickserv :'identify $"pass > $netdir/data

 echo JOIN $target > $netdir/data

 while (cmd=`{read}) {

 s=$status

 if(~ $s *eof) {

 echo QUIT : Leaving... > $netdir/data

 exit

 }

 msg=()

 out=()

 switch ($cmd(1)) {

 case /j

 if (~ $#cmd 2) {

 target=$cmd(2)

 msg = (JOIN `{mshift $cmd})

 }

 case /q

 msg = `{mshift $cmd}

 case /x

 echo QUIT : Leaving... > $netdir/data

 exit

 case /*

 echo unknown command

 case *

 msg = 'PRIVMSG '^$target^' :'^$"cmd

 out = '('^$target^') ⇐ '^$"cmd

 }

 echo $msg > $netdir/data

 echo `{etime}^' '^$out

 }

}

userpass=`{auth/userpasswd 'server='^$server^' service=irc

user='^$nick >[2]/dev/null}

if(~ $#userpass 2) {

 nick=$userpass(1)

 pass=$userpass(2)

}

p='/n/ircrc'

bind '#|' $p

echo connecting to tcp!$server!$port...

aux/trampoline tcp!$server!$port <>$p/data1 >[1=0] &

netdir=$p

work

Development

As this article is about using Plan 9 as a desktop, we will only mention develop‐

ment in passing. The programming language used throughout the system is C, or

more specifically a Plan 9 dialect of C. The system also has its own set of compil‐

ers and linkers, one set for each supported architecture. Here is a quick example of

how to write and compile a C program:

; ed take.c

?take.c

a # ed: append text

#include <u.h>

#include <libc.h>

void

main(int, char*[])

{

print("take me to your leader!\n");

exits(nil);

}

. # ed: end text input

w # ed: write file

112

q # ed: quit

; 8c take.c

; 8l take.8

; 8.out

take me to your leader!

Don't worry about the ed stuff if you're not used to this editor, there are alterna‐

tive text editors in Plan 9 that will also be unfamiliar to you. Plan 9 users will of‐

ten open a file with the B command, which will open the file in whatever text edi‐

tor happens to be open, or it will launch the default editor if none is running (usu‐

ally sam, add editor=acme to $home/lib/plumbing, if you prefer acme instead). At a

casual glance the C program looks much like a UNIX equivalent, but a keen ob‐

server will notice many startling differences. Most Plan 9 programs only have two

included headers, the architecture dependent code u.h and the standard library

libc.h. Notice also that it's perfectly legal for a main to return void, and that ex‐

its, not exit, returns a string.

There are other differences too. For one we see that a program in the current di‐

rectory can be executed just by giving its name, in UNIX this isn't usually toler‐

ated, or at least frowned upon. Another difference is that compiler and linker are

two separate programs, and that each architecture has their own set. This makes it

very easy to cross-compile programs. For instance, in the above example a 32-bit

PC architecture is assumed, but on a 32-bit PC you can easily compile 64-bit pro‐

grams using 6c and 6l, or you can compile ARM programs using 5c and 5l (see

2c(1)). Of course you cannot run ARM programs on PC hardware, but a

Raspberry Pi running Plan 9 can easily compile its software on a PC running Plan

9 (or vice versa for that matter). In fact it's easy-peasy to cross compile a 32-bit

Plan 9 system into 64-bits (see section 5.2.2.1 (https://fqa.9front.org/fqa5.html#5.2.2.1) in

the 9front fqa).

Probably, the best place to start if you want to develop in Plan 9, is to read the

article C Programming in Plan 9 (http://doc.cat-v.org/plan_9/programming

/c_programming_in_plan_9). The specific details of the Plan 9 C dialect is discussed in

/sys/doc/comp.ps. Other important papers in this directory are the acid debugger

paper acidpaper.ps and the mk paper mkfiles.ps (equivalent to make in UNIX).

The other papers here will also give you some useful hints, but be aware that some

of them are quite dated. Lastly, manpages and source code is very readable in Plan

9, so use that for what it's worth! The src command will let you quickly look up

source code for any given command, eg. src echo. Another resource that I highly

recommend is Introduction to Operating Systems Abstractions Using Plan 9 from

https://fqa.9front.org/fqa5.html#5.2.2.1
https://fqa.9front.org/fqa5.html#5.2.2.1
https://fqa.9front.org/fqa5.html#5.2.2.1
https://fqa.9front.org/fqa5.html#5.2.2.1
https://fqa.9front.org/fqa5.html#5.2.2.1
https://fqa.9front.org/fqa5.html#5.2.2.1
http://doc.cat-v.org/plan_9/programming/c_programming_in_plan_9
http://doc.cat-v.org/plan_9/programming/c_programming_in_plan_9
http://doc.cat-v.org/plan_9/programming/c_programming_in_plan_9
http://doc.cat-v.org/plan_9/programming/c_programming_in_plan_9
http://doc.cat-v.org/plan_9/programming/c_programming_in_plan_9
http://doc.cat-v.org/plan_9/programming/c_programming_in_plan_9
http://doc.cat-v.org/plan_9/programming/c_programming_in_plan_9
http://doc.cat-v.org/plan_9/programming/c_programming_in_plan_9
http://doc.cat-v.org/plan_9/programming/c_programming_in_plan_9

Bell Labs, by Francisco J. Ballesteros. You can download the PDF for free from

the internet, and despite its tedious name, it is a marvelous programming intro‐

duction to Plan 9. Naturally many classic UNIX resources are also useful for Plan

9, even though many details aren't directly applicable, such as The C

Programming Language by Kernighan and Pike, The UNIX Programming

Environment by the same, and The AWK Programming Language by Aho,

Kernighan and Weinberger.

Beyond shell and awk programming, there are also some support for external pro‐

gramming languages, such as POSIX C and sh (see /sys/doc/ape.ps), Perl,

Python, Go, Scheme, Lua, and Limbo if you install Inferno (see appendix L in

9fronts fqa (https://fqa.9front.org)). Generally though C and shell programming are by

far the best supported languages. The Perl port is very old for instance, and

Python was recently dropped from 9front (you can still get it if you want - see in‐

structions below).

Version Control

All the Plan 9 file systems (cwfs or hjfs in 9front, or fossil or kfs in classic Plan 9)

have built-in support for snapshots. And like all file systems with snapshot capabil‐

ities, only the difference between the versions are saved, so a snapshot of a 1 Gb

file with 10 Kb of difference, will only consume 10 Kb of disk space. Snapshots are

usually taken at regular intervals automatically, but you can take one manually if

you want, e.g. echo dump >>/srv/hjfs.cmd (use /srv/cwfs.cmd if you are using the

cwfs file system). To read snapshots run 9fs dump, the files will be located in

/n/dump. For example if you are looking for the snapshot of /usr/glenda/prj/code.c

taken 23 February 2020, it will be located in /n/dump/2020/0223/usr/glenda

/prj/code.c. The yesterday command is a quick way to print the path of the most

recent snapshot. history will print all available snapshots where the file content

differs.

The Bell Labs developers used the built in snapshot feature of Plan 9 as their ver‐

sion control system, and for personal use this works great. But if you are collabo‐

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#inferno
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#inferno
https://fqa.9front.org/
https://fqa.9front.org/
https://fqa.9front.org/
https://fqa.9front.org/
https://fqa.9front.org/
https://fqa.9front.org/

rating online with other programmers, or if you are working on non-Plan 9 soft‐

ware, you probably want to use a more traditional version control software.

Previously the 9front developers used mercurial to maintain their project, but re‐

cently a switch was made to git, using the Plan 9 port called git9 (it is still possi‐

ble to get mercurial if you really need it):

Installing python and hg (mercurial):

; cd /tmp

; git/clone gits://git.9front.org/plan9front/pyhg

; cd pyhg

; install.rc

Files and Namespaces

The big difference between UNIX and Plan 9, which is especially important for de‐

velopers to note, is that while "everything" is a file in UNIX, everything is a file in

Plan 9! There are no sockets or ioctl for instance, all networks and devices are con‐

trolled through plain files. It is hard to emphasize just how much simpler this

makes programming, but some illustrative examples can be found in the

Automation sections above.

In order to make everything in this dynamic and complex world of ours work as

files, Plan 9 uses some conventions and mechanics that are unfamiliar to UNIX

users. For example, devices often need control interfaces as well as input/output

interfaces, so Plan 9 often implements a device as a directory with multiple files.

For example audio input/output is handled through /dev/audio, but the control in‐

terface is /dev/audioctl, and hardware statistics are available through /dev/audio‐

stat (in 9front that is). Another example is the /bin directory, which unlike UNIX

contains all available programs on the system. However, what that means may diff‐

ffer from program to program, and notably, from process to process. Files in /bin

can also be directories that group related programs together. All games are in

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#automation
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#automation

/bin/games for instance, so launching /bin/games/sudoku requires you to type

games/sudoku.

There are no links in Plan 9, instead files and directories can be bound to different

locations using the bind command. Lets again consider /bin: Programs are actually

sprinkled in different places throughout the system, 32-bit PC binaries are in

/386/bin, 32-bit PC binaries for acme are in /acme/bin/386. Shell scripts are in

/rc/bin and personal shell scripts are in $home/bin/rc, and so on. When the system

boots, the relevant program directories are all bound to /bin. If the system is 32-

bit PC /386/bin is bound to /bin, if it's a 64-bit Sparc system /sparc64/bin is

bound instead, and so on. The important lesson here is that the correct filestruc‐

ture is assembled during boot. To see the full details of how your filestructure is as‐

sembled, use the ns command. This namespace can be manipulated freely, and it

only effects the current process (and any child processes executed afterwards).

For example, in the previous version control section, we mentioned how you can

look up old versions of some file. But this might be tedious if we need to check out

many files of a given date, in such a case it would be simpler to manipulate our

namespace instead. Let say we want to check out all of our project files, as they

were on 23 February 2020, the following commands should do the trick:

; 9fs dump

; bind /n/dump/2020/0223/usr/glenda/prj $home/prj

Now all of the files in $home/prj in this window refer to our old copies of 2020. To

go back to the current version of this directory, just run unmount $home/prj (that's

unmount, not umount). The bind command can be used much like ln in UNIX, to

create shortcuts from one point to another in the file system. But it is much more

powerful. For one it doesn't care if the files are in the same file partition, or even

on the same physical machine. For another you don't need to replace directories,

you can merge them. That is what Plan 9 does with /bin, many directories are

bound together in this location. Various flags to bind let you specify if the direc‐

tory should be prepended or appended, and whether or not to allow file creation in

such a union.

Another example of such namespace manipulation is the rcpu (cpu in classic Plan

9) command, which binds a remote CPU servers processor to the current process,

while the local files and devices, such as the keyboard, are kept unmodified. The

window still looks and behaves like a normal Plan 9 terminal, but it's now using

the remote machines processor. This is handy if the remote machine is fast, while

the local machine is slow or over taxed. It is also useful if you are testing software

for a different architecture, such as running ARM programs from a PC or vice

versa. Other remote resources can be imported as well, such as an external audio

or ethernet device (and thus create a very simple MPD/VPN service). Again, only

the process in question is manipulated, other running processes are unaffected.

Namespaces lies at the very heart of Plan 9's capabilities, but it's hard for UNIX

users to grasp the concept. If it helps, think of each Plan 9 process running inside

its own mini-jail. The difference though is that namespaces in Plan 9 were not pri‐

marily devised as a way to isolate resources, but a way to distribute them.

If you really want a jail though, it's simple enough to implement one:

; rcpu -u loser # unprivileged user

; plumber # isolated inter-proc messaging

; auth/factotum -n # isolated auth services

; rio # isolated desktop

; mkdir fake

; bind fake $home # sandbox home directory

; rfork n # isolated namespace

; rfork e # isolated environment variables

; rfork s # isolated signals

; rfork f # isolated file descriptor table

; rfork m # disallow mounts

You can mix and match these commands to give your jail more or less powers, and

you can manipulate files in /dev and /net to grant or deny various devices and net‐

works. Read fork(2) for more details.

Sidenote: You'll notice that many of the scripts in this article start with rfork e.

This ensures that the variables used in the script are not inadvertently blended

with the parent. On rare occasions you may want that. The max script above for

example shares its environment variables with the parent. It sets the windowsize

variable to the current window size, if it isn't already set. This value is then later

used by another invocation of max to restore a window to its former dimensions.

(thus "unmaximizing" it) Generally though, it is hazardous to use global variables,

so start your scripts with rfork e. It is prudent to use rfork ne if you are working

with directories that may change, such as /mnt or /tmp, and in rare occasions you

may want to run plain rfork (it defaults to rfork nes) to isolate your script even

further. It ensures a stoic indifference if your parent commits seppuku.

The Web

If you have a wired connection to the internet (you do if your using a virtual ma‐

chine), you should already be connected. If not run the command ip/ipconfig. If

your having trouble, you can run the netaudit script, and see if the network status

looks like it's supposed to (classic Plan 9 does not have this script).

Wireless Network

Wireless networking is only supported in 9front. During startup you may see a line

similar to #l1: '/lib/firmware/iwn-6005' does not exist (you can check startup

messages later with cat /dev/kmesg). This tells you that firmware for the wireless

device #l1 is missing.

9front uses firmware from OpenBSD, so download the correct package for your de‐

vice from firmware.openbsd.org (https://firmware.openbsd.org), and unpack it in /lib (if

you don't have wired internet access, put this file on a FAT32 formatted USB

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#script_max
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#script_max
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#script_max
https://firmware.openbsd.org/
https://firmware.openbsd.org/
https://firmware.openbsd.org/
https://firmware.openbsd.org/
https://firmware.openbsd.org/
https://firmware.openbsd.org/
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#memstick
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#memstick

stick, using Ubuntu or Windows or whatever and transfer it that way), reboot, and

then you can connect to a wireless network. To illustrate:

; cd /lib

; hget https://firmware.openbsd.org/firmware/6.6/iwn-firmware-

5.11p1.tgz | tar xz

; reboot

; bind -a '#l1' /net # you might want to add this to $home/lib

/profile

; aux/wpa -s mynetwork -p /net/ether1

!Adding key: proto=wpapsk essid=mynetwork

password: ******

!

; ip/ipconfig ether /net/ether1

You can easily automate the last two steps with a short script, and thus connect to

a wireless network with wifi mynetwork:

fn wifi{

 aux/wpa -s $1 -p /net/ether1

 ip/ipconfig ether /net/ether1

}

fn wifiscan{

 # scan for available networks

 cat /net/ether1/ifstats

}

Normally, 9front uses the ethernet as its default network card, but you can over‐

write this. Adding ether0=type=iwl in plan9.ini, will tell the system to use the

wireless network card as /net/ether0. (see plan9.ini(8) for more details)

PS: Make sure the firmware package has the file you need (iwn-6005 in the above

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#memstick
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#memstick

example), it might not be the latest one. You also need to recompile the kernel if

you want the network card enabled at boot time.

Browsing The Web

The preferred web browser for 9front is mothra, but the classic Plan 9 browser,

abaco, is also available. Both of these web browsers have only basic support for

HTML, they do not support any CSS, let alone JavaScript. Also, you must supply

a full URL with a protocol prefix, eg. https://www.wikipedia.org, not just

wikipedia.org.

To open a local HTML file in mothra, write file:///path/to/file. To download

content from a website, right-click and choose moth mode. The mouse cursor will

change to a moth, you can now click on any link or image to download it. Choose

moth mode again, to return to the default mode, where clicking on a link will follow

it instead of downloading it (abaco cannot open local files or download content).

As for acme, you cannot use it to browse the web interactively, but you can do a

basic text dump of a webpage, by middle clicking something like wurl2txt

http://9front.org.

Recently, NetSurf has been ported to Plan 9 by the 9front developers. The browser

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_software
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_software
https://pspodcasting.net/dan/blog/2019/images/browsers.png
https://pspodcasting.net/dan/blog/2019/images/browsers.png

is slow and glitchy with a ton of bugs, and thus provides a fairly convincing web

2.0 experience. It is still a very simple browser though, so don't expect to do your

online shopping in Plan 9 anytime soon (you can do youtube - but not in a

browser).

Install the Plan 9 port of NetSurf from github:

; cd $home/src

; git/clone https://github.com/netsurf-plan9/nsport

; cd nsport

; fetch clone http

; mk

; mk install

; netsurf # browse! (make sure webfs is running)

Downloading

In addition to downloading files interactively with a browser, you can get files with

hget (it works much like wget in UNIX). There is also ip/torrent for downloading

torrents.

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#youtube
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#youtube

Email

Hints on setting up an email server can be found in section 7.7 (https://fqa.9front.org

/fqa7.html#7.7) of the 9front fqa. And see section 8.4.1.1 (https://fqa.9front.org

/fqa8.html#8.4.1.1) for tips on interfacing the Plan 9 mail server with GMail. Once

you have configured this to your suit your needs, Plan 9 provides a few alternative

email clients. Probably the most useful one will be acme's mail client Mail, but you

can check out faces and nedmail too if you want.

Chatting

To join the fairly active #cat-v channel, on irc.oftc.net, where 9front developers

hang out, run this command ircrc -n mynick -t '#cat-v'. A few alternative 3rd

party IRC clients are also available, and an xmpp (jabber, eg. Google Talk) client.

You can check out the latter projects web site (https://sr.ht/~ft/xmpp/) if you are in‐

terested.

Install and use the ircs persistent IRC client:

; cd /tmp

; 9fs 9front

; tar xzf /n/extra/src/ircs.tgz

; cd ircs

; mk install

; ircs -p dansimon irc.oftc.net # start IRC client

; ircx -t '#cat-v' # start IRC user interface

An IRC log is available in /tmp/ircs/log. The first time you run this, factotum will

ask you for your password (the -p in ircs means 'use a password'). You can add

this password permanently the the secstore file factotum, for a fully automatic au‐

thentication.

https://fqa.9front.org/fqa7.html#7.7
https://fqa.9front.org/fqa7.html#7.7
https://fqa.9front.org/fqa7.html#7.7
https://fqa.9front.org/fqa7.html#7.7
https://fqa.9front.org/fqa7.html#7.7
https://fqa.9front.org/fqa7.html#7.7
https://fqa.9front.org/fqa7.html#7.7
https://fqa.9front.org/fqa7.html#7.7
https://fqa.9front.org/fqa7.html#7.7
https://fqa.9front.org/fqa8.html#8.4.1.1
https://fqa.9front.org/fqa8.html#8.4.1.1
https://fqa.9front.org/fqa8.html#8.4.1.1
https://fqa.9front.org/fqa8.html#8.4.1.1
https://fqa.9front.org/fqa8.html#8.4.1.1
https://fqa.9front.org/fqa8.html#8.4.1.1
https://fqa.9front.org/fqa8.html#8.4.1.1
https://fqa.9front.org/fqa8.html#8.4.1.1
https://fqa.9front.org/fqa8.html#8.4.1.1
https://sr.ht/~ft/xmpp/
https://sr.ht/~ft/xmpp/
https://sr.ht/~ft/xmpp/
https://sr.ht/~ft/xmpp/
https://sr.ht/~ft/xmpp/
https://sr.ht/~ft/xmpp/
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_pass
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_pass
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_pass
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#pim_pass

Running a Web Server

Plan 9 is quite capable of serving web pages, just as long as you keep things sim‐

ple. To quickly set up a local web page, do the following:

Write some static html file(s), $home/www/mysite/index.html for instance. And

check that it works (eg. mothra file://$home/www/mysite/index.html). Now we can

configure the rc-httpd web server, by adding the following to /bin/rc-

httpd/select-handler:

if(~ $SERVER_NAME mysite){

 PATH_INFO=$location

 FS_ROOT=/usr/myname/www/$SERVER_NAME

 exec static-or-index

}

Start the web server by running aux/listen1 tcp!mysite!80 rc-httpd/rc-httpd

(make sure you middle click the terminal window and select "scroll"). You should

now be able to connect to your web server with mothra http://mysite!

PS: Substitute mysite for whatever hostname or ip address is appropriate for your

machine.

Multimedia

9front has quite decent multimedia support as we shall see, but classic Plan 9 sys‐

tems are very limited in this respect. They only support SoundBlaster cards for in‐

stance, and MP3 file formats (oddly enough you will find the MP3 decoder and en‐

coder under /bin/games in classic Plan 9). To enable audio in a qemu virtual ma‐

chine (for both 9legacy and 9front), run qemu with the -device sb16 flag, and add

this line to plan9.ini: audio0=type=sb16 port=0x220 irq=5 dma=5. After this, you

still need to bind the audio device in 9legacy, like so: bind -a '#A' /dev. You may

want to add this command to $home/lib/profile. You don't need to mess with

your profile in 9front however, and audio should just work out of the box on real

hardware.

Audio

Adjusting the volume, to say 80%, can be done like this: echo 80 > /dev/volume, or

more precisely: echo master 80 80 > /dev/volume (80% for left and right speakers).

But switching between headphones and speakers can be a bit tricky. If you're are

lucky the hardware will just take care of it, but if you aren't you have to manually

redirect audio pins. On one of my machines the command echo pin 21 > /dev/au‐

dioctl switches audio output to the jack port, on another the command echo pin

33,12,2 > /dev/audioctl does the trick. It varies from machine to machine, you

can figure out the correct command by analyzing the output of cat /dev/audio‐

stat. This can be a bit daunting, but don't panic, just look for words such as jack,

speaker, out, pin, and experiment. Don't worry, the machine will not blow up if

you get it wrong ;)

You might find some of the following functions helpful, keep in mind though that

some specifics here are hardware dependent:

fn volume{ echo master $1 $1 > /dev/volume }

fn headphones{ echo pin 21 > /dev/audioctl ; volume 40 }

fn speaker{ echo pin 20 > /dev/audioctl ; volume 80 }

fn mute{ volume 0 }

fn pause{ stop pcmconv | rc }

fn resume{ start pcmconv | rc }

fn skip{ kill pcmconv | rc }

Of course, there are more user friendly 3rd party utilities that can help you out.

jacksense (https://git.sr.ht/~ft/jacksense) tries to automatically switch between output

pins, whenever you plug in a headset. And volume.c from the 9front extra reposi‐

tory, gives you a simple button for adjusting output volume.

https://git.sr.ht/~ft/jacksense
https://git.sr.ht/~ft/jacksense
https://git.sr.ht/~ft/jacksense
https://git.sr.ht/~ft/jacksense
https://git.sr.ht/~ft/jacksense
https://git.sr.ht/~ft/jacksense

Technically you can play a raw audio file just by running cat file > /dev/audio,

or you can decode it first: audio/mp3dec < file.mp3 > /dev/audio. But 9front in‐

cludes a userfriendly shell script that makes life much easier: play file.mp3.

Doing audio recording is theoretically possible in 9front, you first need to redirect

the correct pins as in the above example to set audio for input instead of output,

and then a read from /dev/audio will record sound. Eg. cat < /dev/audio > file,

or oggenc < /dev/audio > file.ogg. However, I have not been able to make this

work in practice on my test machines, but maybe you will have better luck then I

did.

The classic way to play music in Plan 9, was using the archaic juke player. You

first needed to write a fairly verbose database of your audio files though (see

juke(7) if you really want to do this). Thankfully, 9front recently replaced this

rusty jukebox with a cool new audio player called zuke. It easy and pleasant to

use:

; audio/mkplist $home/music/myalbum > $home/lib/plist/myalbum

; audio/zuke < $home/lib/plist/myalbum

https://pspodcasting.net/dan/blog/2019/images/juke.png
https://pspodcasting.net/dan/blog/2019/images/juke.png

Video

For the longest time there were no video playing options at all in Plan 9, but re‐

cently a video player called treason has been written by the ever progressive 9front

developers. The video player has limited capabilities, it cannot skip back and forth,

and worse, cannot scale the video in any way. It would have been nice if we could

manually set a lower screen resolution; by running aux/vga -m vesa -l 1024x768x16

for instance, before playing a 480P (DVD quality*) movie, to watch it fullscreen.

But that will not work on all video cards, such as, notably, my video card, but

maybe you'll have better luck. (see the Game Emulators section for some tips) In

any case, fullscreen or not, you can watch Plan 9 in Plan 9, how cool is that!

Install the video player Treason from the developers website:

; mkdir /tmp/treason

; cd /tmp/treason

; hget https://ftrv.se/_/treason.gz | gunzip | disk/mkext -d .

; ./treason/install.rc

; treason der_film.mkv # watch some vids :)

Youtube

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#included_emulators
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#included_emulators
https://pspodcasting.net/dan/blog/2019/images/treason.png
https://pspodcasting.net/dan/blog/2019/images/treason.png

Oh yes. With treason installed, you absolutely can watch Youtube videos in Plan

9. But first you need to install a Youtube downloader:

install nvi, similar to youtube-dl in unix:

; cd /tmp

; git/clone https://git.sr.ht/~ft/nvi

; cd nvi

; mk install

make some convenient wrapper scripts:

#!/bin/rc

ytaudio - play audio only from youtube video

nvi -A 251 -a /fd/1 $1 |

mcfs -t audio |

audio/opusdec > /dev/audio

#!/bin/rc

ytlow - play low quality youtube video

nvi -V 18 -v /tmp/vid.mp4 $1 &&

treason /tmp/vid.mp4 &&

rm /tmp/vid.mp4

#!/bin/rc

ythigh - play high quality youtube video

nvi -a /tmp/audio -v /tmp/video $1 &&

treason -a /tmp/audio /tmp/video &&

rm /tmp/audio /tmp/video

You can now play the audio track of Plan 9 from Outer Space with ytaudio

qsb74pW7goU, watch it in low quality with ytlow or high quality with ythigh. You

can also add a plumbing rule to automatically play a youtube URL, just add this

to $home/lib/plumbing before the include basic line:

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#plumbing
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#plumbing

type is text

data matches 'https://(www.)?youtube[^]+'

plumb start window ytlow ''''$0''''

If you now right click on https://www.youtube.com/watch?v=qsb74pW7goU in acme, or

run plumb with that argument (you need to put it in quotes since '=' has special

meaning for the shell), you'll see a nice low res video of a low quality movie.

Graphics

Viewing Images/Documents

There is only one program to display images and documents alike, and that is

page. It is a fantastic application, despite lacking support for some documents

types such as DOCX or ODT, and poor support for others such as Epubs. PDF's,

old Microsoft Office documents, images and other simple formats usually work.

Reading Comics

Comic books are often distributed as CBR or CBZ files, these are just rared or

zipped images, so to read them unrar (you can get unrar in 9fronts extra reposi‐

tory - go is a dependency) or unzip the file, and then view the extracted images in

page:

; unzip -af voyage_to_venus_1.cbz

; lc voyage_to_venus_1

001.jpg 018.jpg 035.jpg 052.jpg 070.jpg 087.jpg

002.jpg 019.jpg 036.jpg 053.jpg 071.jpg 088.jpg

003.jpg 020.jpg 037.jpg 054.jpg 072.jpg 089.jpg

...

to view all of these, starting with 001.jpg:

; page voyage_to_venus_1

Creating Images

paint is available, though you would be hard pressed to use it for anything but

kindergarten art. resample(1), crop(1) and rotate(1) on the other hand, are useful

little tools for image manipulation, see their manpages for more information.

Another good alternative for image manipulation (as in ImageMagick not as in

PhotoShop), is pico9, available in the 9front extra repository. It's still in the early

stages of development, but it's looking good!

Taking a Screenshot

Not only is there a file in /dev for your window text, but there is also a file for

your window screen, /dev/window. To take a screenshot of your current window,

you can run this command: cat /dev/window > windowdump ; page windowdump. To

take a screenshot of your entire screen, do this: cat /dev/screen > screendump.

These images are saved in the native Plan 9 image format, which of course the

document/image viewer page can read. But if you want to use these images on

other operating systems, you should convert them to the more popular PNG or

JPEG formats: cat /dev/screen | topng > sshot.png or simply tojpg < /dev/win‐

dow > window.jpg

As for taking a screenshot of a different window then the current one, take a look

at the rio scripting section above. You can also do this in a more GUI-like fashion,

if you install the 3rd party program vshot (http://shithub.us/phil9/vshot/HEAD/info.html).

Screencasting

There is work in progress on a screen recording program for 9front, called wrec,

available in the extra repository. It can do simple screen capturing, but doesn't

record sound yet. PS: I recommend recording with very few frames per second, eg

wrec -f 3, for best results. If you want to scale down a GIF and make it continu‐

ally loop, as in the above example, you can export the file to a UNIX machine

with ImageMagick installed and run: convert -delay 20 -loop 0 -resize 600

screencast.gif small.gif.

Peripherals

USB sticks

In 9front USB sticks are automatically mounted in /shr, but if you need to manu‐

ally mount it, run ls /dev | grep sd before and after plugging in your memory

stick, to find its device name. Supposing it's sdUc59fd run the following command

to mount the memory stick in /n/dos: mount <{dossrv -s} /n/dos

/dev/sdUc59fd/dos, and unmount it with unmount /n/dos, see dossrv(4) for more in‐

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#rio_scripting
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#rio_scripting
http://shithub.us/phil9/vshot/HEAD/info.html
http://shithub.us/phil9/vshot/HEAD/info.html
http://shithub.us/phil9/vshot/HEAD/info.html
http://shithub.us/phil9/vshot/HEAD/info.html
http://shithub.us/phil9/vshot/HEAD/info.html
http://shithub.us/phil9/vshot/HEAD/info.html
https://pspodcasting.net/dan/blog/2019/images/screencast.giff
https://pspodcasting.net/dan/blog/2019/images/screencast.giff

formation. If the device doesn't show up in /dev after plugging it in, there is either

some hardware/driver issue, or the device uses a file system that isn't supported.

Traditionally only DOS and Plan 9 file systems have been supported, but with the

addition of ext4srv in the 9front extra repository, it is also possible to work with

Linux file systems.

NTFS (Windows file system) is not supported, so you might need to reformat your

memstick to FAT32 (DOS file system) before you can use it. Assuming it is still

called sdUc59fd, you can do so like this:

; disk/fdisk /dev/sdUc59fd/data

p # print a table of partitions

? # get help instructions

d p1 # delete a couple of partitions

d p2

a p1 # add a new partition

1 # just follow suggested size

971

t p1 # set partition type

? # list available types

FAT32

w # write and quit

q

; disk/format -d /dev/sdUc59fd/dos

CD/DVD/BD's

To mount an iso image in /n/iso run the command mount <{9660srv -s >[0=1]}

/n/iso /path/to/your/cdrom.iso. This may look cryptic, but it's actually very easy

to work with CD/DVD/BD's in Plan 9 (see cdfs(4)), the following demonstration

shows how to mount an audio CD (you only need to specify the device if it isn't

/dev/sdD0), play it, and rip it:

; cdfs -d /dev/sdE1

; cat /mnt/cd/a* > /dev/audio

; cp /mnt/cd/a* /tmp/songs

You might find these custom functions helpful too:

fn mem{ mount <{dossrv -s >[0=1]} /n/dos $1 }

fn iso{ mount <{9660srv -s >[0=1]} /n/iso $1 }

fn eject{ echo eject > /mnt/cd/ctl }

fn cdfs{ /bin/cdfs -d /dev/sdE1 }

fn cddb{ # query the internet CD database

 cdfs

 grep aux/cddb /mnt/cd/ctl | rc

}

fn rip{ # rip a CD and convert it to ogg

 cdfs

 for(t in /mnt/cd/a*) audio/oggenc < $t > `{basename $t}^.ogg

}

The next example shows how to burn an audio CD. Simply change 'a' for 'd' to

burn a data disk (DVD's and Bluerays are always data disks). The last command

fixates the disk, which is not necessary on rewritable CD's or data disks:

; cdfs -d /dev/sdE1

; cp /tmp/files/* /mnt/cd/wa

; rm /mnt/cd/wa

Printers

Let me save you a lot of trouble: put LPDEST=stdout in your $home/lib/profile,

now lp will print its postscript to standard output. You can convert these PS files

to PDF if you want, then copy or email them to a Windows/UNIX machine, and

print out a hardcopy from there:

; lp doc.html | ps2pdf > doc.pdf

; doctype doc.ms | rc | lp | ssh unixmonster 'cat | lpr'

or from drawterm (os lets you run a host command)

; doctype doc.ms | rc | lp | os lpr

Games and other Fun Stuff

Gaming is a potentially contentious topic when it comes to computers. Although

massively popular of course, nothing is more detrimental to productivity (except a

modern web browser perhaps). So the trick to creating a good computer game, is

making it fun enough to distract you for a few minutes of recuperation, but boring

enough that it doesn't keep you from doing important work. By this definition

Plan 9 has a few "good" games.

Included Games

https://pspodcasting.net/dan/blog/2019/images/games.png
https://pspodcasting.net/dan/blog/2019/images/games.png

Plan 9 comes with a collection of games in /bin/games. My favorites include:

• games/sudoku

• games/mahjongg

• games/sokoban

• games/mines (9front only)

Included Game Emulators

In 9front you will also find a number of emulators in the game directory, assuming

you can get hold of a legal copy of the Mario World ROM for instance, you can

play it like so: games/snes -ax 4 mario.sfc (beware though some of these oldschool

games can be dangerously fun!)

• games/nes Nintendo

• games/snes Super Nintendo

• games/gb GameBoy

• games/gba GameBoy Advanced

• games/md Sega Mega Drive

• games/c64 Commodore 64

In my first attempts at playing these games, the experience was not perfect. My

rusty old ThinkPad struggled to get good audio out of these games, and as men‐

tioned in the Video section, my video card flat out refused to set the screen to a

lower resolution. I managed to circumvent both issues by PXE booting 9front in

my more powerful desktop machine. It works great as a Plan 9 movie and gaming

console, and I have a nice little launch script for Zelda:

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#video
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#video
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_cpu_terminals
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#sysadmin_cpu_terminals

#!/bin/rc

zelda - launch zelda fullscreen

usage: zelda

depends: gaming "console" and zelda rom

aux/realemu

aux/vga -m vesa -l 1024x768x16

window -r 0 0 1024 768 games/snes -ax 4 $home/games/snes/zelda.sfc

while(sleep 5){

 if(! ps | grep -s snes) aux/vga -m vesa -l 1920x1080x16

}

3rd Party Games

3rd party games, or indeed software, for Plan 9 is rare. But there are exceptions,

some good ones are 2048, hack9 and snake.

Install 2048 and hack9 game from the 9front extras:

; cd /tmp

; 9fs 9front

download packages

; cp /n/extra/src/2048.c .

; tar xzf /n/extra/src/hack9.tgz

compile and install 2048

; 8c 2048.c

; 8l 2048.8

; mv 8.out $home/bin/386/2048

compile and install hack9

; cd hack9

; mk install

Install snake game from Bell Labs contrib repository:

; cd /tmp

; 9fs sources # download file

; cp /n/sources/contrib/john/snake.c /tmp

; 8c snake.c # compile and install it

; 8l snake.8

; mv 8.out $home/bin/386/snake

https://pspodcasting.net/dan/blog/2019/images/hack9.png
https://pspodcasting.net/dan/blog/2019/images/hack9.png

Edutainment

There are a few educational applications in Plan 9, such as scat, map and graph for

drawing star charts, maps and graphs (all of which use plot to actually draw the

graphics). Many of the programs in /bin/games are also more edutainment then ac‐

tual games. This includes simulators such as life, galaxy and timmy. You also have

some very computer science nerdy "games" such as blit (more on this later) and

mix (last four examples are 9front specific).

Arithmetic

The classic bsdgames collection provides UNIX with many simple edutainment

programs, most of which are not available in Plan 9. No matter, we can just write

them from scratch. Or at least, I can demonstrate how to implement some of the

basic ones. Who knows, maybe these simple scripts will inspire you to write an ac‐

tually entertaining game yourself :^)

https://pspodcasting.net/dan/blog/2019/images/hack9.png
https://pspodcasting.net/dan/blog/2019/images/hack9.png

#!/bin/rc

arithmetic - basic arithmetic quiz

usage: arithmetic [-q n][-r n][-o '+-*/%^']

set some default values

rfork e

right=0

wrong=0

questions=20

range=1 # in digits

operands='+-'

start=`{date -n}

parse optional flags

for(i in $*){

 switch($i){

 case -q

 questions=$2 && shift 2

 case -r

 range=$2 && shift 2

 case -o

 operands=''$2'' && shift 2

 }

}

rnum: generate a random digit based on cpu clock

fn rnum{

 awk '{ print $2 }' /dev/time | sed 's/.*(.)$/\1/'

}

ask math questions

opleft=$operands

for(i in `{seq $questions}){

 # generate random math puzzle

 a=`{rnum}

 b=`{rnum}

 if(test $range -gt 1){

 for(i in `{seq `{echo $range - 1 | bc}}){

 a=`{echo $a^`{rnum}}

 b=`{echo $b^`{rnum}}

 }

 }

 if(~ $#opleft 0) opleft=$operands

 if not{

 opused=`{echo $opleft | sed 's/^(.).*/\1/'}

 opleft=`{echo $opleft | sed 's/^.(.*)/\1/'}

 }

 echo $a $"opused $b

 correct=`{ echo $a $"opused $b | bc }

 answer=`{ read }

 # evaluate given answer

 while(! ~ $answer $correct){

 if(echo $answer | grep -s '^[-+]?[0-9]+$'){

 echo What?

 wrong=`{ echo $wrong + 1 | bc }

 }

 if not echo Please type a number '(no decimals!)'

 answer=`{ read }

 }

 echo Right!

 right=`{ echo $right + 1 | bc }

}

print result of math quiz

finish=`{date -n}

time=`{echo $finish - $start | bc}

total=`{echo $right + $wrong | bc}

timepq=`{echo $time / $total | bc}

if(~ $right 0){ prct=0% }

if not prct=`{ echo 'scale=2 ; '$right' / '$total'' |

 bc | sed 's/\.//' | sed 's/$/%/' }

echo -n $right right, $wrong wrong '('$prct' correct)'

 in $time seconds '('$timepq's per answer)'

Quiz

quiz is another simple classic from bsdgames, it just asks you a bunch of questions

and keeps track of your progress. Originally the UNIX quiz programs could ask

you some fairly dated questions about geography, Star Trek or the ed editor, but

the real beauty of this program is that you can write your own quiz files. In theory

you could even use this program for serious purposes, such as training vocabulary

or prepping for an exam.

#!/bin/rc

quiz - ask questions and look for correct answers

usage: quiz [-as][-q questions][file]

#

bug: case is normally ignored, but not for exotic unicode

characters, this is

a grep bug.

bug: special characters in the correct answers must be escaped

(eg. \?\!)

variables

rfork e

ifs='

'

dir=$home/lib/quiz

is=(Correct answer is)

right=0

wrong=0

printanswer=no

if(~ $1 -a) printanswer=yes && shift 1

silenterror=no

if(~ $1 -s) silenterror=yes && shift 1

questions=20

if(~ $1 -q) questions=$2 && shift 2

parse args

if(~ $#* 0) ls -p $dir && exit

if(~ $#* 1) file=$dir/$1

if not echo usage: quiz [-as][-q questions][file] && exit

if(test `{cat $file | wc -l} -le $questions) questions=`{cat $file

| wc -l}

ask questions, and check answers

for(i in `{sed -e '/^$/d' -e '/^#/d' $file | shuf | sed

''$questions'q'}){

 question=`{ echo $i | awk -F@@@ '{ print $1 }' }

 if(echo $question | grep -s '^cmd ')

 eval `{ echo $question | sed 's/^cmd //'}

 if not echo $question

 correct=`{ echo $i | awk -F@@@ '{ print $2 }' }

 correct_answer=`{ echo $i | awk -F@@@ '{ print $3 }' }

 if(~ $#correct_answer 0) correct_answer=$correct

 answer=`{ read }

 if(echo $answer | grep -si '^'$correct'$'){

 if(~ $printanswer yes) echo -n Right! $"is

$"correct_answer

 if not echo -n Right!

 right=`{ echo $right + 1 | bc }

 }

 if not{

 if(~ $silenterror yes) echo -n Wrong!

 if not echo -n Wrong! $"is $"correct_answer

 wrong=`{ echo $wrong + 1 | bc }

 }

 read

}

calculate results

if(~ $right 0){ prct=0% }

if not prct=`{ echo 'scale=2 ; '$right' / '$questions'' |

 bc | sed 's/\.//' | sed 's/$/%/' }

if not echo $right right, $wrong wrong '('$prct' correct)'

This program expects a plain text database in $home/lib/quiz with two, optionally

three, fields separated by @@@. The fields are: question, answer. The correct answer

can be written as a regex, to allow for variations, if so then a third field must also

be written, the default answer. Here is what the end of my $home/lib/quiz/capi‐

tols file looks like:

Ukraine@@@Kyiv|Kiev@@@Kyiv

United Kingdom@@@London

Uruguay@@@Montevideo

Uzbekistan@@@T[oa]shkent@@@Toshkent

Vanuatu@@@Port Vila

Venezuela@@@Caracas

Vietnam@@@Ha ?Noi@@@Ha Noi

Yemen@@@[ŞS]an'?a'?@@@Şan'a'

Zambia@@@Lusaka

Zimbabwe@@@Harare

Touchtype

Learning to touchtype is a must for any serious computer user, and even for the

seasoned sysadmin it is a skill that one might want to brush up on from time to

time. There are elaborate touchtyping tutors in UNIX, such as ktouch, but the ba‐

sic method of learning this skill is fairly simple: Print out a picture of your key‐

board layout and stick it to the wall, as you type away, look up at the picture not

down at your keyboard (ideally you should also place your fingers on the middle

row, with your index fingers on the two keys which have little bumps on them).

This is hard to do in the beginning, but if you keep at it, you will gradually learn

to touchtype. The following script will not take away the pain and discipline re‐

quired to learn this skill, but it can help you track your progress. Just retype each

line that you are given, but do not hit backspace and correct your mistakes, just

keep on typing. When you are done the script will tell you how well/bad your typ‐

ing skills are.

#!/bin/rc

touchtype - check your typing speed and accuracy

usage: touchtype [file]

choose input sample

rfork ne

tmp=/tmp/touchtype-$pid

out=/tmp/touchtype-out-$pid

fortune > $tmp

if(~ $#* 1) cat $1 > $tmp

ifs='

'

do some touchtyping

start=`{date -n}

for(line in `{cat $tmp}){

 echo $line

 read >> $out

}

stop=`{date -n}

calculate results

time=`{echo $stop - $start | bc}

char=`{cat $tmp | wc -c}

speed=`{echo '('$char' / '$time') * 60' | bc}

err=`{cmp -l $out $tmp | wc -l}

if(~ $#err 0) prc=0

if not prc=`{echo 'scale=2 ; '$err' / '$char'' | bc | sed

's/\.//'}

print results

rm $tmp $out

echo

echo 'RESULT (<2% errors and >200 c/m is good):'

echo your write speed is $speed c/m with $prc^% errors

Playing With Telnet

Believe it or not, but there are actually a lot of fun stuff to be done with telnet,

even in 2021! Not least of which is playing MUD's, multi-user-dungeons are still

alive and kicking. You can find a list of popular ones on http://mudconnect.com.

Here are some fun telnet examples (PS: run vt first for a better user experience):

; telnet discworld.starturtle.net # Play the Discworld MUD

; telnet towel.blinkenlights.nl # Watch Star Wars IV in ASCII

; telnet twenex.org # Login to a shell server with a handful of

TTY games

Miscellaneous Fun

You can do a lot of fun stuff on Plan 9 that do not strictly fall into the category of

"gaming". A classic example is fortune, which will display a random quote. 9front

also ships with troll and theo, which does much the same thing, but are more spe‐

cific. Plan 9's fortune is also handy for printing a random line form an arbitrary

file (eg. play `{fortune playlist}). Another fun program is games/festoon, which

generates a gibberish troff document, you can for instance use it like so:

games/festoon -pet | pic | eqn | tbl | troff -mm | page

Some of the programs in /bin/games are more or less screensavers, such as juggle

and catclock. 9front also throws in mole and packet, which fit this category. Lastly,

there is a port of classic UNIX screensavers in the 9front extra repository, called

xsr.

Obscure Operating Systems

We have already touch on vmx in the virtualizing section above, which let you run

things like Linux, and plausibly Windows, in 9front. But you can also run a few

obscure operating systems more natively, and these systems may be of special in‐

terest, and provide a lot of fun, for a Plan 9 fan:

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#virtualizing
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#virtualizing

Inferno

The Inferno project was started a few years after Plan 9 was initially released, and

it was more or less developed in tandem at Bell Labs, with the same group of de‐

velopers. The operating system share much in common with Plan 9, you will find

acme and other similar programs, and it shares the exact same file system protocol

(although it is referred to as styx, not 9p, in the docs for historic reasons). Since

everything in Inferno is a file, you can seamlessly share devices and other resources

between it and Plan 9.

This last point is especially valuable, because Inferno was designed to run on top

of other operating systems. It can run on virtually any (old) UNIX system, Plan 9

of course, and even in old Internet Explorers! Inferno presents the network, audio,

memory etc. of these systems as regular files, and thus provide an elegant bridge

between a Plan 9 system and, say, a Linux or FreeBSD box. It can also run in as

little as 256 Kb of memory, a quarter of a Megabyte! So it is well suited for embed‐

ded applications.

Sadly though, Inferno suffers badly from neglect and code rot. Audio will not work

today, and with it, any of the multimedia applications that Inferno provides.

Worse, Inferno is only supported on 32-bit systems, and it's getting increasingly

difficult to even build it on modern systems. Yet, there is a ray of hope: The 9front

developers have recently started hacking away at the Inferno code, and created the

forks purgatorio and 9ferno. 9ferno does actually build on amd64 Linux and

9front (use "9front", not "Plan9", as the SYSHOST). It is still early days, but it's

fun to see that this old project finally gets some love! You can install and run the

original Inferno in Plan 9 (32-bit) like so:

; cd $home/src

; git/clone https://bitbucket.org/inferno-os/inferno-os

; mkdir /usr/inferno

; dircp inferno-os /usr/inferno

; cd /usr/inferno

; path=(/usr/inferno/Plan9/386/bin $path)

; mk install

install a new user

; mkdir tmp

; mkdir usr/$myuser

; dircp usr/inferno usr/$myuser

run inferno and start a desktop

; emu

; wm/wm

to get purgatorio or 9ferno forks

; cd $home/src

; git/clone gits://git.9front.org/plan9front/purgatorio

; git/clone gits://git.9front.org/plan9front/9ferno

https://pspodcasting.net/dan/blog/2019/images/inferno.png
https://pspodcasting.net/dan/blog/2019/images/inferno.png

Be sure to read the papers in the doc directory here, especially bltj.pdf, sh.pdf,

descent/descent.pdf, and limbotk/tk.pdf, which introduces the Inferno operating

system, its rc-inspired shell, its unique programming language, Limbo, and the Tk

GUI toolkit for it. Inferno was written in an entirely new programming language,

Limbo, a precursor to Go. Unlike Plan 9, its approach to GUI's is also much closer

to traditional systems. So if you have experience with Tk, or really any other tool‐

kit in UNIX or Windows, you will find it quite easy to develop graphical programs

in Inferno. Btw, the default startup menu is quite scarce, but you will find many

additional GUI programs under /dis/wm, and you can modify the startup menu

configuration file in /lib/wmsetup.

Inferno was intended as a commercial product, and it has a sort of Windows'y feel

to it. And yet, despite deep differences, it is very reminiscent of Plan 9. It is an in‐

teresting blend, and a fun programming environment. But be prepared for bugs

and limitations, the project has been quite dead for a long time (in contrast to

Plan 9, which is quite undead).

PS: You can get around many of the limitations in Inferno with the os command,

it lets you execute a host program from within Inferno. For example, Inferno does

not include awk, tar or lp (lpr in UNIX), but you can easily write wrapper func‐

tions that use these host commands. You might also want to add some startup

shortcuts to your local $home/lib/wmsetup. (shells will only use $home/lib/profile

with the -l (ell) flag)

inferno startup shortcuts for plan 9, adjust to suit your needs:

EMU=(-g1600x900 -C x8r8g8b8 -f /fonts/vera/veramono

/veramono.12.font -c1)

fn inferno{ /usr/inferno/Plan9/386/bin/emu wm/wm wm/logon -u

myuser }

to halt inferno, run this in an inferno shell

; shutdown -h

adding awk to inferno (do this within inferno):

; mkdir $home/dis

; echo bind -b $home/dis /dis >> $home/namespace

; touch $home/dis/awk

; chmod +x $home/dis/awk

then, you can add this to $home/dis/awk:

#!/dis/sh

awk - a wrapper for awk on host

usage: awk '{ cmd... }'

bugs: does not support awk flags

if {~ $#* 0} { file = /fd/0 } { file = $2 }

os -d $emuroot^`{pwd} awk $1 $file

UNIX V8

In the late 80's, the designers of UNIX continued to work on their operating sys‐

tem, and developed Research UNIX Version 8 through 10, before they went on to

develop Plan 9. You can see the prototypes of many Plan 9 ideas in these early

UNIX systems. For example, mux, jim and face, are essentially the prototypes for

rio*, sam* and faces in Plan 9, you will find early versions of plot and proof too.

You can run early editions of UNIX with the SIMH emulators, using the vax780

emulator for V8 and the BSD's, and the pdp11 emulator for the earliest editions of

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html

UNIX. To install and run V8:

first, install the simh emulators

; cd /tmp

; 9fs 9front

; tar xzf /n/extra/src/simh.tgz

; cd simh

; plan9/build_all

; mkdir $home/bin/$objtype/simh

; dircp BIN $home/bin/$objtype/simh

download v8 and run it

; hget http://9legacy.org/download/unix/v8-simh.tar.bz2 | bunzip2

| tar x

; cd v8-simh

; vt

; simh/vax780 v8.ini

login: root

Using the ANSI terminal vt is not a hard requirement, but it provides a better ex‐

perience. Once the server is running, right click and choose "raw". This will prevent

text from echoing twice, and it will allow you to use key combinations, like Del and

https://pspodcasting.net/dan/blog/2019/images/blit.png
https://pspodcasting.net/dan/blog/2019/images/blit.png

Ctrl-D (otherwise Plan 9 will interpret these signals). And yes, early UNIX's used

Delete to kill a process, just like Plan 9 does. After halting the system (see notes

below), right click and choose "cooked". When you now hit the Delete key, Plan 9

will stop the VAX emulator. Lets add a new user to our V8 system:

install a new user

echo myuser::8:4:mh1092,m069:/usr/myuser: >> /etc/passwd

mkdir /usr/myuser

/etc/chown myuser /usr/myuser

exit

login: myuser

set up your environment

$ cat << eof > .profile

TERM=blit # or vt100

export TERM

PATH=$PATH:/etc:/usr/games:/usr/blit/bin:$HOME/bin

export PATH

eof

halt the system - preferred way (old v7 style also works)

$ su

kill 1

/etc/umount -a # v7 style: sync; sync; sync

/etc/halt

you can now safely kill the vax780 emulator

As you can see, the system is quite similar to Plan 9 in its simplistic approach to

user management and shutdown procedures. We will get back to the TERM value

later, but basically, if you plan on connecting to V8 with vt, or a UNIX terminal,

use vt100. And this is the value you want to set, if you are running V7 or one of

the BSD's in SIMH. Setting the TERM value will allow you to use programs like vi

and rogue. Setting the PATH variable will make it easier to launch programs, you

can run chown for example, rather then the more accurate /etc/chown. If you don't

already have it, I highly recommend that you get The UNIX Programming

Environment by Kernighan and Pike. This is the book on UNIX, whether you use

V8 or a Mac or anything in between! Also, if you have the interest, you can look

up the abstract papers provided with UNIX Version 7 and 10, referred to as

"Volume 2" of the manual. They provide some historic context and useful hints for

V8.

In the olden days, UNIX ran on a big server somewhere in the basement, with

multiple users connected to it via diskless terminals. You can simulate this by

opening up several windows and connect to the server via telnet: telnet tcp!<my‐

machine>!8888, just make sure to change <mymachine> to your actual computer

name (eg. "cirno", not "localhost"). Since these terminals are stateless, you don't

need any shutdown procedure, just delete the window. The server however runs a

file system, so it should be halted with the above instructions.

As mentioned though, V8 was meant to be a graphical system, and it included a

window manager, graphical text editor and other pointy-clicky things. Bell Labs

created their own graphical terminal for V8, called the Blit (originally the Jerq,

but for some reason management had problems with that name). To use graphical

programs in V8, you need to connect to a V8 server with a Blit terminal. 9front in‐

cludes a blit emulator, and you can connect it to a V8 server like so: games/blit

-b 19200 -C 000000,00ff00 -t tcp!<mymachine>!8888 (the first two flags here are

optional). You can start the window manager with /usr/blit/bin/mux, or if you

have set your PATH correctly, just mux.

If you access V8 with this blit emulator, you want to set the TERM variable to blit.

However, programs such as vi and rogue will not work in mux. To run such pro‐

grams you first need to quit the window manager with mux exit, and then run

these programs in the text terminal. You will find some fun graphical programs

under /usr/blit/bin, including demo pacman and crabs. The later spawns a bunch

of tiny crabs that wonder about the screen and randomly eats chunks of your win‐

dows. According to Rob Pike it was a favorite pun among the developers to sched‐

ule such a program to run 30 minutes into the future, whenever some boss at Bell

Labs needed to use the computer for an important meeting. Enjoy :)

Office

There are a great many office suits on most operating systems, and other utilities

besides too numerous to count. So many are the choices in fact that it's easy to

forget that "office" is just a fancy word for working with text. Plan 9 does not de‐

lude it's users: You need to be a proficient reader and writer to use the system,

and you need to organize and manage your files. In other words, you need to have

essential office skills to use the system well.

Reading Office Documents

As far as it's up to you, I'm sure all of your documents are plain text as a matter

of course. Plain text is editable, searchable, pipeable, programmable. You can

mangle it freely with standard tools such as grep, sed and awk, and it doesn't re‐

quire a flippin Terrabyte of diskspace. In Plan 9 text is even more powerful, it's al‐

https://pspodcasting.net/dan/blog/2019/images/office.png
https://pspodcasting.net/dan/blog/2019/images/office.png

ways unicode, it's plumbable, acmeable, zeroxable, yesterdayable, snarfable and

devable (yes, these are "real" words in Plan 9). It's the magic goo that holds every‐

thing together, much like in the real world. You would be insane not to write docu‐

ments as plain text! But sadly it's not always up to you. Your pesky boss may

send you important Word documents, with little to no regard for your peculiar

taste in operating systems. Don't panic! Many office documents are readable with

page (naturally HTML files can be read with mothra). Documents that aren't han‐

dled by page, such as DOCX or ODT, can easily enough be converted to PDF be‐

fore importing them to your Plan 9 box (assuming you don't run Plan 9 on all

your machines that is).*

Reading Epubs

In theory, page can handle Epubs, but in my experience it can't. Epubs are basi‐

cally just zipped HTML files, so it is possible to unzip them, search around for a

"toc" (table of contents) file to find what files constitute what chapters, and then

read them one by one in a web browser. The following script automates that

process:

#!/bin/rc

epub2html - convert epub to html

usage: epub2html file.epub

bugs: only one epub at a time

set some defaults

rfork e

cwd=`{pwd}

fn usage{

 echo Usage: epub2html file.epub >[1=2]

 exit usage

}

if(! ~ $#* 1) usage

file=$1

if(! ~ $file /*) file=`{cleanname $cwd/$1}

if(! test -f $file && ! ~ $1 *.[Ee][Pp][Uu][Bb]) usage

name=`{basename $1 | sed 's/\.[Ee][Pp][Uu][Bb]//'}

dir=$name^_files

determine directory name of toc file

fn ops{

 ops=`{ls -p $1 | grep -i '^o.*ps'}

 if(~ $#ops 0) echo $1

 if not{

 toc=`{ls -p $1/$ops | grep -i 'toc.ncx'}

 if(~ $#toc 0) echo $1

 if not echo $1/$ops

 }

}

extract epub and chapter information

mkdir -p $dir && cd $dir

unzip -af $file >/dev/null >[2=1]

ops=`{ops $cwd/$dir} && cd $ops

cat [Tt][Oo][Cc].[Nn][Cc][Xx] | sed -n '/<navPoint

/,/<\/navPoint/p' |

 sed -n 's/.*<text>(.*)<\/text>.*/\1/p' > chaps

cat [Tt][Oo][Cc].[Nn][Cc][Xx] | sed -n '/<navPoint

/,/<\/navPoint/p' |

 sed -n 's/.*src="(.*)".*/\1/p' | sed 's/%20/ /g' > links

generate html index

cat <<eof > $cwd/$name.html

<!DOCTYPE html>

<html>

 <head>

 <meta charset="utf-8">

 <title>Contents</title>

 </head>

 <body>

 <h1>Contents:</h1>

eof

for(i in `{seq `{cat links | wc -l}}){

 link=`{sed -n $i^p links}

 chap=`{sed -n $i^p chaps}

 echo ' '$"chap'
' \

 >> $cwd/$name.html

}

cat <<eof >> $cwd/$name.html

 </body>

</html>

eof

This script works surprisingly well for my needs, but I cannot guarantee that it

will handle absolutely all Epubs gracefully. Feel free to expand or adjust the script

to suit your needs. To wet your appetite, I will add three additional scripts based

on epub2html. They are fairly self explanatory. The last one, eread, is probably the

most interesting; It extracts the epub directly into private memory and reads the

resulting html in mothra. Once you exit the browser, the files are discarded. Thus it

provides a fast way to read epubs without messing with temporary files on disk. Of

course, if you aren't a lazy bum like me, you might want to patch up page so that

it handles Epubs correctly, instead of monkeying about with shell scripts ;)

#!/bin/rc

epub2txt - convert epub to text

usage: epub2txt file.epub

depend: epub2html

set some defaults

rfork e

if(! ~ $#* 1) exit usage

keep=yes

name=`{basename $1 | sed 's/\.[Ee][Pp][Uu][Bb]//'}

if(! test -f $name.html){

 keep=no

 epub2html $* || exit $status

}

ifs='

'

convert extracted epub to text

> $name.txt

for(file in `{awk -F" '/<a/ { print $2 }' $name.html})

 html2ms < $"file | deroff | fmt >> $name.txt

if(~ $keep no)

 rm -rf $name.html $name^_files

#!/bin/rc

epub2pdf - convert epub to pdf

usage: epub2pdf [-k] file.epub

depend: epub2html

bugs: troff(1) cannot handle any and all fonts,

so expect to see Weinberger pinups pop up.

set some defaults

rfork e

if(! ~ $#* 1) exit usage

keep=yes

name=`{basename $1 | sed 's/\.[Ee][Pp][Uu][Bb]//'}

if(! test -f $name.html){

 keep=no

 epub2html $* || exit $status

}

temp=/tmp/epub2pdf-$pid

mkdir $temp

ifs='

'

convert extracted epub to pdf

for(file in `{awk -F" '/<a/ { print $2 }' $name.html})

 html2ms < $"file >> $temp/out.ms

doctype $temp/out.ms | rc | dpost -f >[2]/dev/null |\

 ps2pdf '-dCompatibilityLevel=1.4' > $name.pdf

rm -rf $temp

if(~ $keep no) rm -rf $name.html $name^_files

#!/bin/rc

eread - read an epub directly in mothra

usage: eread file.epub

depend: epub2html, mothra

rfork ne

cwd=`{pwd}

name=`{basename $1 | sed 's/\.[Ee][Pp][Uu][Bb]//'}

extract epub to memory, then read it

ramfs -p; cd /tmp

epub2html `{cleanname $cwd/$1} || exit $status

mothra -a file://tmp/$name.html

Writing Office Documents

For all it's wondrous benefits, plain text documents has an obvious flaw: They

don't look good. If you need to write an article or even just a professional looking

letter, you need something a little more sophisticated then monospace fonts. Troff

is your friend (an ancient Plan 9 port of Tex is also available, but i recommend

troff). Don't be too quick to dismiss this venerable old tool! While man man will

print a rather unimpressive monospaced manual, the command man -t man | page,

produces a much more professional looking document! Besides the man(6) macros

for writing manual pages, Plan 9 also includes the ms(6) macros for writing generic

articles and letters, naturally with full unicode support (a feature either missing or

clunky in UNIX Troff, not to mention Tex or DocBook). You can also use the

mpictures(6) macros for including images (these must be converted to Postscript

first, eg: jpg -9t < image.jpg | lp -dstdout > image.ps) and the html2ms/ms2html

commands for converting troff articles to/from HTML.

Here is a letter in troff (using ms macros), and a screenshot of the result:

.DS L

To: Archduke Poggle of Geonosis

23 Insectoid Str.

Hive

103133

GEONOSIS

From: Emperor Palpatine

Imperial Palace

P0 000001

Senate District

CORUSCANT

.DE

.SH

Dear Archduke

.PP

The so called

.I

undefeatable

.R

Death Star was blown to bits by a bunch of teenagers yesterday.

I must say I am disappointed!

We need to construct a new planet killer ASAP,

and this time lets try to avoid an

.B

Achilles heel

.R

in our design shall we?

.PP

I have some other ideas for further improvements.

First of all we need a

.I

menacing

.R

throne room with a view...

.DS

Yours truly,

 Palpatine

.DE

troff syntax is very simple, add a troff or macro command, such as .SH for a sec‐

tion header or .PP for a paragraph on a line by itself, then the text content after it.

Technically these are ms macro commands, which differ slightly from man macros,

low level troff commands are written in lower case (eg. .br or .bp to force a line

break or begin a new page). You can also write certain inline troff commands if

you need to (eg. \fIitalics\fRroman\f(CWconstant-width fonts). But you don't need

to know all that if you just want to write a simple letter, in fact .SH and .PP will

suffice, but see ms(6) if you are thirsty for more.

Make no mistake, troff can be used to write highly professional documents. The

development section mentioned Francisco J. Ballesteros excellent book on Plan 9,

it is worth mentioning that this book was written in Plan 9 using troff. A less

professional, but perhaps still useful example, is my article on Operating System

Complexity. You can compare this PDF with the ms source code for a taste of

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#development
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#development
https://pspodcasting.net/dan/blog/2020/complexity.pdf
https://pspodcasting.net/dan/blog/2020/complexity.pdf
https://pspodcasting.net/dan/blog/2020/complexity.pdf
https://pspodcasting.net/dan/blog/2020/complexity.pdf
https://pspodcasting.net/dan/blog/2020/complexity.ms
https://pspodcasting.net/dan/blog/2020/complexity.ms

what writing a troff document looks like.

One issue when working with troff is that you need to use a plethora of different

troff preprocessors, macro packages and what not, in order to compile the source

into a useful document. Run doctype myfile.ms to see what commands are needed

to convert the file into pure troff, this can then be read in page or converted to

useful formats. To illustrate:

; doctype myfile.ms

tbl myfile.ms | troff -ms -mpictures

; doctype myfile.ms | rc | page

; doctype myfile.ms | rc | dpost > myfile.ps # ei. postscript

; doctype myfile.ms | rc | dpost | ssh unixmachine 'lpr'

; doctype myfile.ms | rc | dpost | ps2pdf > myfile.pdf

; tbl myfile.ms | nroff -ms > myfile.txt

; ms2html < myfile.ms > myfile.html

Depending on your document, some of these conversions may not work very well.

Plain text and HTML conversions are often quite bad, but Postscript and PDF

should work well. If you work a lot on troff documents you may find it useful to

create some shortcuts, for example:

fn readms{ doctype $* | rc | page }

fn ms2pdf{ doctype $* | rc | dpost | ps2pdf

'-dCompatibilityLevel=1.4' > out.pdf }

Tweaking Troff Macros

Now, to be clear, you don't want to write your documents in pure troff. Friendly

macro packages like ms are there for a reason! Nevertheless, there are times when

you actually need a more hands on approach. I regularly print and send personal

letters for instance. The default ms documents have a very small font with wide

margins. To make matters worse, the macro is not calibrated for an A4 paper size,

which is ubiquitous here in Europe. The net result is that my ms letters have

barely readable fonts with magnanimous margins all around. Besides, I prefer

Helvetica over the Times font, so lets change things up a bit. Here is a very basic

macro package that does the job:

.\" Basic A4 troff macros for personal letters

.\" automatically add margins at top and bottom of page

.de hd

'sp 0.4i

..

.de fo

'bp

..

.wh 0 hd \" run hd at start of page

.wh -0.6i fo \" run fo at bottom -0.6 inches

.\" set A4 paper size (8.3i x 11.7i), margins and text size,

.\" and redefine standard fonts to use Helvetica

.pl 11.7i \" page length

.ll 7.4i \" line length (8.3 - 0.4 - 0.5 (right margin))

.po 0.4i \" page offset (left margin)

.ps +2 \" point size (text size)

.vs +1 \" vertical (line) space

.fp 1 R H \" redefine font 1 (regular) roman

.fp 2 I HI

.fp 3 B HB

.\" add user friendly macros

.de SH \" section header

.ft 3

.ps +4

..

.de PP \" paragraph

.ps 12 \" reset text size and type

.ft 1

.sp 1 \" (vertical) space

.ti 2 \" temporary indent

..

.de R \" basic font macros

.ft R

..

.de I

.ft I

..

.de B

.ft B

..

As you can see, a troff macro command is defined within a .de CMD, .. block, and

comments begin with \". You can read the troff paper in /sys/doc/troff.ps, to

learn more of whats going on. And you might want to look at the ms macro pack‐

age in /sys/lib/tmac/tmac.s, and perhaps add a few more commands to this bare

bones example. Plan 9 troff comes with only a limited number of installed fonts,

peek at /sys/lib/troff/font/devutf/shell.lib to look at your options. If you need

custom fonts, colors and URL links in your documents, you really need to bite the

bullet and use GNU troff. Gavin Freeborn (https://www.youtube.com/@GavinFreeborn

/videos) has some nice youtube videos on the subject, if you're interested.

This macro package uses slightly larger fonts then ms, which has a default point

size of 10, and it hugs the corners of the paper much closer (about a centimeter of

margins on all four sides). To use the macros in my documents, I can add .so my‐

macro.a4 to the top of my letter, and then read it with troff myletter.a4 | page.

But since I'll use it frequently, it is more convenient to install it system wide: cp

mymacro.a4 /sys/lib/tmac/tmac.a4. I can now drop the .so mymacro.a4 line, and

compile my letter like so: troff -ma4 myletter.a4 | dpost | ps2pdf

'-sPAPERSIZE=a4' > myletter.pdf. (note that Ghostscript, used by ps2pdf, needs to

know the paper size as well as troff)

Spellchecking

The spellchecker spell(1), and the acme equivalent aspell, is a simple but useful

tool for spellchecking English text (sadly it does not support user supplied dictio‐

naries). Speaking of which, dict(7) is an excellent English dictionary, somewhat

https://www.youtube.com/@GavinFreeborn/videos
https://www.youtube.com/@GavinFreeborn/videos
https://www.youtube.com/@GavinFreeborn/videos
https://www.youtube.com/@GavinFreeborn/videos
https://www.youtube.com/@GavinFreeborn/videos
https://www.youtube.com/@GavinFreeborn/videos
https://www.youtube.com/@GavinFreeborn/videos
https://www.youtube.com/@GavinFreeborn/videos
https://www.youtube.com/@GavinFreeborn/videos

equivalent to WordNet in UNIX. To use this tool you need to install some files

first, see the README's in /lib/dict for instructions.

There is precious little support for non-English languages in any operating system,

but you can use various strategies for spell checking at least, as an example con‐

sider these functions for spell checking Norwegian:

fn lower{

 tr A-ZÆØÅ a-zæøå

}

fn words{

 tr -c 'a-zæøåA-ZÆØÅ''' '

 ' | sed 's/''//g' | sort | uniq

}

temp=/tmp/dict-$pid

dict=/lib/words.no # Norwegian dictionary

lodict=`{basename $dict} # Local Norwegian dictionary

fn nolook{

 look $* $dict

}

fn nospell{

 if(test -f $lodict) dict=$lodict

 for(word in `{deroff $* | lower | words | comm -13 $dict -})

 if(! grep -s '^'$word'$' $dict) echo $word

}

fn noaddword{

 if(test -f $lodict) dict=$lodict

 for(word in $*) echo $word >> $dict

 words < $dict > $temp && mv $temp $dict

}

fn nomkdict{

 comm -12 <{deroff $* | lower | words} $dict >> $lodict

 for(word in `{deroff $* | lower | words | comm -13 $lodict -})

 if(! grep -s '^'$word'$' $dict) echo $word >> $lodict

 words < $lodict > $temp && mv $temp $lodict

}

These functions require you to have a dictionary of correctly spelled Norwegian

words in /lib/words.no. Assuming you have a UNIX machine nearby with the

Norwegian wordlist for aspell installed, you can import the dictionary like so: ssh

myunixpc 'aspell -d nb dump master | aspell -l nb expand' | tcs -f 8859-4 |

sort > /lib/words.no (change "nb" here if you need another language, eg. "fr" for

French). The lower and words shorthands take the special Norwegian letters æøå

into account. nolook is just a shorthand for Norwegian look(1).

Much like spell, nospell breaks up your document into individual, unique words

stripped of any troff syntax, and prints any word not found in the dictionary. (un‐

fortunately comm doesn't handle non-English letters well, which is why we need an

extra grep line to catch words that contain the Norwegian letters æøå) To add cus‐

tom words to the dictionary, use noaddword. You'll note though that nospell will

use a local dictionary file, if it exists. Run nomkdict *.ms to populate such a local

dictionary, ~/dict.no, with words matched in the global dictionary, /lib/dict.no.

You can now freely noaddword's to the custom list, without effecting the system

dictionary, and spellchecks will be hundreds of times faster, since the local dictio‐

nary is honed to the vocabulary of your project files.

These custom tools are crude, in particular they do not handle suffixes/prefixes, so

you need a large global dictionary before they become useful. For instance, the

document you are reading now contains some 4113 unique English words. spell

will flag 1053 of them as spelling errors.* If you use the above strategy coupled

with the default dictionary in /lib/words, containing some 30,000 words, you will

get a whooping 2174 errors. Using the English aspell dictionary however, contain‐

ing some 120,000 words, you will only get 853 errors (the default Plan 9 dictionary

intentionally omits suffixes/prefixes). Of course all of these errors are false posi‐

tives. (I hope!)

By comparison LibreOffice will give you 828 unique false positives, which is about

as lousy. The spellchecking mechanics of this massive office suit is certainly more

attractive then our crude shell script, but is it necessarily "better"? Does it im‐

prove your spelling skills to right click in a GUI a thousand times, rather then

manually retyping the correct words one by one? How easy is it to customize the

tool and adapt it to your peculiar idiosyncrasies? Even with today's impossibly fast

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html

computers, LibreOffice can lag for a minute or two as you correct a false positive

by clicking "Ignore All" in a large document. This office suit is a million times

more complex then our tiny shell script (literally), but is it a million times better?

All of these solutions are unsatisfactory, but that's life in a nutshell. The English

language being what it is, an intelligent spellchecker is science fiction tantamount

to strong AI. Our exercise might teach us some additional life lessons too: 1)

Simple solutions are good enough, 2) Computers cannot fix the human condition,

3) The life of a writer is tedium. If you want to take a stab at writing a better

spellchecker though, I recommend ch. 13 in Programming Pearls (Bentley) and ch.

12 in Classic Shell Scripting (Robbins & Beebe).

PIM

"PIM" is just a fancy acronym for getting organized. My former work place was a

disorganized disaster zone with half a dozen "professional" project management so‐

lutions in place. Every so often my colleagues would be frustrated enough with the

mess that they introduced a new project management tool, which naturally aggra‐

vated the situation further. The moral? Software cannot magically clean up your

mess, only you can organize yourself.

Plan 9 does not pretend to be your nanny, but it does give you basic tools that

you can use to get yourself organized. Such tools include date and cal to keep

track of time, calendar and tel to keep track of appointments and contacts, and

cron to schedule execution of programs (it requires a CPU+AUTH server). And

with just a little bit of awk it's easy to create your own PIM tools. We will take a

look at a few examples here. The following scripts are intentionally basic, likely

they will not suit your needs exactly, but hopefully they can inspire you to write

tools that will!

2do Lists

First off, lets create a simple 2do list manager:

#!/bin/rc

2do - simple 2do list manager

usage: 2do [list [id... | task...]]

bugs: a task cannot begin with a number

set some defaults

rfork ne

dir=$home/lib/2do

mkdir -p $dir

tmp=/tmp/2do-$pid

date=`{date -i}

parse arguments

if (~ $#* 0) ls -p $dir && exit

if (~ $#* 1){ grep -v '^#' $dir/$1 | sort -k 2; exit }

list=$1 ; shift

id=1 # id is either 1 or one more then the highest id

if (test -f $dir/$list)

 id=`{awk '{ if($1 > id) id=$1 } END { print id+1 }'

$dir/$list}

id: remove tasks; task: add it

if (echo $* | grep -s '^[0-9\]+$'){

 for (id in $*)

 sed '/^'$id' /s/^/#/' $dir/$list > $tmp && mv $tmp

$dir/$list

if not echo $id $date $* >> $dir/$list

And here is a short demonstration of its usage:

; for (thing in eggs milk cheese) 2do buy $thing

; 2do work start some project

; 2do

buy

work

; 2do buy

3 2021-03-23 cheese

1 2021-03-23 eggs

2 2021-03-23 milk

; 2do buy 1 3

; 2do buy

2 2021-03-23 milk

As you can see, this 2do script is very basic. It lets you define an arbitrary number

of lists that you can add tasks to, one at a time, and remove tasks by listing their

ID numbers. Each new task is given a unique ID and today's date, and the tasks

will be listed from oldest to newest. To remove a list completely just run rm

$home/lib/2do/mylist, and you can of course edit the 2do list manually in a text

editor if you wish, eg B $home/lib/2do/mylist.

The script can easily be expanded in many interesting ways, for example you

might want to add priorities and sort by priority first, then by date. The tasks are

not actually removed, but commented out, so it is possible to check how many

tasks have been completed since the project began and give an ETA of when the

list will be completed. Finally, you may want to add flags that let you adjust some

of the defaults here, such as setting a date other then today. Feel free to experi‐

ment and play with the code, and if you have added all of these features and more,

take a step back and consider the difference between your version and the original.

Was it worth the extra complexity?

Queues

Our next script is embarrassingly simple, it's just a crude mechanism for managing

a queue, by printing the next line in a file whenever we run que on it. But as we

shall see, it turns out to be surprisingly useful.

#!/bin/rc

que - a simple queue tracker

usage: que [-p] file

set some defaults

rfork ne

tmp=/tmp/que-$pid

pronly=no

check arguments and errors

if (~ $#* 0 || test $#* -gt 2) {

 echo Usage: que [-p] file >[1=2]

 exit usage

}

if (~ $1 -p) {

 pronly=yes

 file=$2

}

if not file=$1

if (! test -f $file){

 echo Error: File $file does not exist! >[1=2]

 exit nofile

}

print task and update queue

if (! task=`{grep -n '<--' $file | sed 's/:.*//'}) task=1

next=`{ echo $task + 1 | hoc }

prev=`{ echo $task - 1 | hoc }

if (~ $pronly yes) { sed -n '$prev'p $file; exit }

sed 's/<--//' $file > $tmp

sed -n ''$task'p' $tmp

sed ''$next's/$/<--/' $tmp > $file

Suppose we are listening through a Red Dwarf audio book, and we have written a

list of these chapters in $home/lib/que/reddwarf, that look like this:

/usr/glenda/music/reddwarf/ch1.mp3

/usr/glenda/music/reddwarf/ch2.mp3

/usr/glenda/music/reddwarf/ch3.mp3

...

If we run que $home/lib/que/reddwarf, it will print /usr/glenda/music/reddwarf

/ch1.mp3, and our list will now look like this:

/usr/glenda/music/reddwarf/ch1.mp3

/usr/glenda/music/reddwarf/ch2.mp3<--

/usr/glenda/music/reddwarf/ch3.mp3

...

The next time we run our command, que will print ch2.mp3 and move the arrow

marker to ch3.mp3. It's easy to automate things further. For example:

; fn reddwarf{ play `{que $home/lib/que/reddwarf} }

; reddwarf # listen to next chapter in our audiobook

; du -a My_Little_Pony | awk '/mp4/ { print $2 }' | sort >

$home/lib/que/mlp

; fn mlp{ treason `{que $home/lib/que/mlp} }

; mlp # watch next episode of My Little Pony

At times we may want to print our current task in the queue without advancing

the marker. For example, I regularly attend weekly meetings and keep a list of

meeting notes which look like this:

/usr/dan/jw/litt/work/2022/mwb_E_202209_files/OEBPS

/202022327.xhtml

/usr/dan/jw/litt/work/2022/mwb_E_202209_files/OEBPS

/202022330.xhtml<--

/usr/dan/jw/litt/work/2022/mwb_E_202209_files/OEBPS

/202022332.xhtml

/usr/dan/jw/litt/work/2022/mwb_E_202209_files/OEBPS

/202022334.xhtml

...

The notes are provided by an Epub that spans several weeks (one for each line). I

have a simple script that extracts the Epub and update my list, which I need to

run maybe three or four times a year. At the start of each week que is run auto‐

matically on this list to advance the marker. Finally I have a meeting script that

runs que -p $home/lib/meeting and open the corresponding HTML notes in mothra.

I may need to run meeting several times a week, but with this setup it will always

refer to the notes for the current week.

Of course the details of this example will likely not be relevant for you, but hope‐

fully it can give you some ideas on how to automate your own workflow. The

weekly notes can easily be daily or monthly notes, and they do not need to be a

file. It could be a directory of files or a script to run or what have you (check out

the plumbing section for further tips).

Password Management

All authentication services in Plan 9 are handled by a process called factotum (a

"factotum" is a servant entrusted will the authority to run the masters estate on

his behalf). The idea is somewhat analogous to PAM in UNIX, but much simpler,

yet more powerful. No program in Plan 9, including the kernel, contain any au‐

thentication code whatsoever, it's all centralized in factotum. This process should

already be running, but if not you can start it with auth/factotum -n. And you

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#epub
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#epub
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#plumbing
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#plumbing

should add this to your $home/lib/profile, so that it automatically runs at every

boot. The -n flag here means, "don't look for a secstore", more on that later. You

can have more then one instance of factotum running, just as you can have multi‐

ple instance of plumber, in case you need to isolate some authentication service

from the rest of the system.

Management of the authentication service is quite easy. To illustrate: when logging

into a UNIX machine with ssh for the first time, factotum will notice that it

doesn't have the needed key, and it will duly prompt you for it, and save the key

safely. Subsequent ssh commands will not ask for a password, since the authentica‐

tion service already knows what it is (the keys will be lost after a reboot though,

but keep reading). You can see what keys the factotum has stored by running cat

/mnt/factotum/ctl, it may return something like this:

key proto=pass server=unixpc service=ssh

thumb=5+dUiv4yKNhWR3e+DmVu9wvgX

tu5gN3xPgApEWJGMR user=glenda !password?

You will notice that secret information, such as your password, will never be

printed out in plain text. Now we could have added this key manually to factotum

like so:

; echo 'key proto=pass server=unixpc service=ssh

thumb=5+dUiv4yKNhWR3e+D

 mVu9wvgXtu5gN3xPgApEWJGMR user=glenda !password='my secret

password''

 > /mnt/factotum/ctl

to delete it, do it manually or with delkey(1)

; echo 'delkey service=ssh' > /mnt/factotum/ctl

; delkey ssh | rc

The real beauty of this service comes into play however, once you couple it with

another service, ei. secstore. Plan 9's secure store saves files in non volatile RAM

using strong encryption, and thus persist safely across reboots. You need to set up

a CPU+AUTH server to use this service, the details on how to do this can be

found in section 7 (https://fqa.9front.org/fqa7.html) (7.4.3 (https://fqa.9front.org

/fqa7.html#7.4.3) for secstored specifically) of the 9front fqa. Once a secstore is run‐

ning, we can write our factotum key database and add it to the vault:

; ramfs -p; cd /tmp # write our file to RAM, not to disk

; cat /mnt/factotum/ctl > factotum

; sam factotum # fill in the passwords

; cat factotum

key proto=pass server=unixpc service=ssh

thumb=5+dUiv4yKNhWR3e+DmVu9wvgX

 tu5gN3xPgApEWJGMR user=glenda !password='my secret password'

key proto=dp9ik dom=mydomain user=glenda !password='don''t forget

me!'

; auth/secstore -p factotum

You'll notice that we added two keys here, one for ssh and a Plan 9 user account

(the dom value here is equivalent to authdom in /lib/ndb/local). We can now change

auth/factotum -n in our $home/lib/profile to auth/factotum. During boot, facto‐

tum will now open up the secure store and read any keys it finds in the encrypted

factotum file. To later edit this file, just type ipso factotum.

You can read more about how Plan 9 security works with page /sys/doc/auth.ps,

but let's talk a little bit more about secstore before we call it quits. The secure

store can be used to encrypt any files we want, not just the factotum database.

Suppose we use gpg to manage a list of encrypted passwords in UNIX, and for con‐

venience keep it around on our Plan 9 box as well. It might look something like

this:

https://fqa.9front.org/fqa7.html
https://fqa.9front.org/fqa7.html
https://fqa.9front.org/fqa7.html
https://fqa.9front.org/fqa7.html
https://fqa.9front.org/fqa7.html
https://fqa.9front.org/fqa7.html
https://fqa.9front.org/fqa7.html#7.4.3
https://fqa.9front.org/fqa7.html#7.4.3
https://fqa.9front.org/fqa7.html#7.4.3
https://fqa.9front.org/fqa7.html#7.4.3
https://fqa.9front.org/fqa7.html#7.4.3
https://fqa.9front.org/fqa7.html#7.4.3
https://fqa.9front.org/fqa7.html#7.4.3
https://fqa.9front.org/fqa7.html#7.4.3
https://fqa.9front.org/fqa7.html#7.4.3

CATEG NAME USER PASSWORD EMAIL WEBSITE

Bank PayPal - 123456 myuser@gmail.com paypal.com

Bank MyBank 123456 password myuser@gmail.com mybank.no

Email GMail myuser MySecret myuser@gmail.com gmail.com

...

We can then do the following:

put our custom database in the secret store

; auth/secstore -p passwords

search the database for passwords

; auth/secstore -G passwords | grep -i bank

; auth/secstore -G passwords | awk '/Bank/ { print $2, $4 }'

securely edit our database

; ipso -e passwords

We can also safely export/import our secret database to a UNIX machine:

export to unix

; ssh unixpc 'gpg2 --gen-key'

; auth/secstore -G passwords | ssh unixpc 'cat | gpg2 -ser myuser

> pass.gpg'

import from unix

; ramfs -p; cd /tmp

; ssh unixpc 'gpg2 -d pass.gpg' > passwords

; auth/secstore -p passwords

If you need to constantly import and export such files, you can easily wrap some of

these commands into more user friendly shortcuts. But suppose we don't have a

CPU+AUTH server with a secstore service, can we still manage our passwords

safely? Sure:

; ramfs -p; cd /tmp

; B passwords

; auth/aescbc -e < passwords > $home/lib/pass.aes

and to double check that the password we typed was correct:

; auth/aescbc -d < $home/lib/pass.aes > /dev/null

search the encrypted file for a password

; auth/aescbc -d < $home/lib/pass.aes | grep -i bank

What if we have written something super secret to disk, is there any way to safely

delete the contents? That depends. If a copy of the file exists in the read only

dump file system, then no. A reinstallation of the operating system is the only way

to remove the file. But if that isn't the case, it's simple enough to overwrite the

contents with blank data:

ps: the whitespace in the sed command here is a tab

; dd -if /dev/zero -of myfile -bs 1024 -count `{du myfile | sed

's/ .*//'}

PS: This is a joke of course, there is no way to guarantee that data written to a

modern harddisk is ever removed, no matter what the disk may claim to your op‐

erating system.

Personal Accounting

For many people the word "accounting" sends cold shivers down their spine, and to

be sure, official business accounting tends to be horrifically complex. But this is

largely due to convoluted legislature, and unnecessarily paranoid triple checking of

the math. For personal accounting we don't need to worry about all that. We just

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#version_control
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#version_control

need a way to quickly record our expenses, and a way to check those expenses

against a budget. Here is a simple script that takes care of our first task:

#!/bin/rc

account - add records to our personal account

usage: account [-d date] [-c catg] $$.CC [comments...]

set some defaults

rfork e

account=$home/lib/account

date=`{date -i}

catg=food

check arguments and errors

if (~ $#* 0) {

 echo 'Usage: account [-c catg] $$.CC [comments...]'

 exit usage

}

for(arg in $*){

 switch($arg){

 case -c

 catg=$2

 shift 2

 case -d

 date=$2

 shift 2

 }

}

if (echo $date | grep -vs '^[12][09][0-9][0-9]-[01][0-9]-

[0-3][0-9]$') {

 echo Error: invalid date, use YYYY-MM-DD >[1=2]

 exit wrongdate

}

if (echo $1 | grep -vs '^[0-9.]+$') {

 echo Error: invalid expense, use $$.CC without prefixes >[1=2]

 exit wrongnumber

}

add record to account

if (~ $catg income) amount=$1

if not amount=-$1

shift

echo $date $amount $catg $* >> $account

And here is a demonstration of its use:

; account -d 2021-03-01 -c rent 1000 it sucks to pay rent

; account -d 2021-03-02 -c income 3500 payday!

this is too much typing, lets reduce it a bit

; fn prompt{ while (echo -n '> ') eval $* `{read} }

; prompt account

> -d 2021-03-04 21.25

> -d 2021-03-06 14.50 groceries

> -c transport 2.50 buss

> -c other 9.50 cinema

> 11.35 # hit Del key to quit input loop

; date -i

2021-03-09

; cat $home/lib/account

2021-03-01 -1000 rent it sucks to pay rent

2021-03-02 3500 income payday

2021-03-04 -21.25 food

2021-03-06 -14.50 food groceries

2021-03-09 -2.50 transport buss

2021-03-09 -9.50 other cinema

2021-03-09 -11.35 food

This demonstration illustrates that personal accounting is often quite tedious. At

least our script tries to reduce some of the work. If we make the habit of typing in

our daily expenses, we do not have to specify a date. Assuming that most of our

expenses are "food" related, we usually don't need to specify a category either.

The script allows us to give a comment to each input record, but that is optional.

Note that we don't use + or - in our records, the script will interpret anything

with a category of "income" as +, anything else as -. Lastly, our script requires us

to type in one record at a time, but it feels redundant to type account every time.

So we created a small function called prompt that lets us define a command, ac‐

count in this case. It reads our input a line at a time, re-evaluates our line as argu‐

ments for our command, and executes it (somewhat reminiscent of xargs in UNIX,

but with an added loop). We quit the loop by typing the Delete key. I find this

trick handy in many different situations, for example, I might want to look up a

bunch of words while writing an article, prompt look or prompt dict does the trick

nicely.

If we plan on using this database for computations, such as summarizing our

monthly expenses and checking it against a budget, it is vital that our database

contain valid data. So we make a couple of extra sanity checks to see if the pro‐

vided date and expense are correct. Our checks are not 100% bullet proof, but it

should be good enough for personal use. So for the next step, the following script

checks our current monthly expenses against a predefined budget:

#!/bin/rc

budget - measure monthly expenses against a budget

usage: budget [YYYY-MM]

set some defaults

rfork e

account=$home/lib/account_simple

if (~ $#* 0) date=`{date -i | sed 's/...$//'}

if not date=$1

echo $date

awk '

BEGIN {

 printf("%-s\n", "-----------------------------")

}

/'$date'.* income/ { income+=$2 }

/'$date'.* rent/ { rent+=$2 }

/'$date'.* save/ { save+=$2 }

/'$date'.* food/ { food+=$2 }

/'$date'.*/ { sum+=$2 }

END {

 printf("%-10s%10.2f %-10s\n", "income:", income, "of 3500")

 printf("%-10s%10.2f %-10s\n", "rent:", rent, "of -1000")

 printf("%-10s%10.2f %-10s\n", "save:", save, "of -200")

 printf("%-10s%10.2f %-10s\n", "food:", food, "of -1000")

 printf("%-10s%10.2f %-10s\n", "other:",

 sum - (income + (rent + save + food)), "of -1000")

 printf("%-s\n", "-----------------------------")

 printf("%-10s%10.2f\n", "Balance:", sum)

}' $account

Running the budget command will result in this output:

2021-03

income: 3500.00 of 3500

rent: -1000.00 of -1000

save: 0.00 of -200

food: -47.10 of -1000

other: -12.00 of -1000

Balance: 2440.90

Naturally our budget here is unrealistically simple, but it does perhaps illustrate

that accounting, at least for personal expenses, does not have to be very difficult.

If you are more into spreadsheets and the like, take a look at the spreadsheets sec‐

tion below, for an alternative approach to managing your finances.

Time Management

There are many elaborate schemes and theories for time management of projects. I

will not really cover that here, instead I will just look at the very basic tools you'll

need for personal time management. First of all the classic calendar program is

well suited to manage your appointments. If the date happens to be the 24 of

March, and you have a $home/lib/calendar file that looks like this:

Mar 23 Finish the Plan 9 Desktop Guide already!

Mar 24 Flee the country

Mar 25 Dentist appointment

Mar 26 Go home

Running the command calendar will print the following lines:

https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_sheet
https://pspodcasting.net/dan/blog/2019/plan9_desktop.html#office_sheet

Mar 24 Flee the country

Mar 25 Dentist appointment

Calendar will print any appointments matching today's and tomorrow's date, or on

a Friday, all dates up until the following Monday. The date and the appointment

have to be separated by a tab. The trick to making this program useful, besides

actually writing down your appointments, is to configure your system to automati‐

cally run the program every day. Exactly how you want to do this depends greatly

on your own setup and tastes, but one simple solution is to add the following to

$home/bin/rc/riostart:

window rc -c 'calendar; rc'

If you need a stopwatch, timer or alarm clock, the following examples may provide

you with some hints:

hit enter to stop the clock, "r" is time in seconds

; time read

set timer for 2 minutes

; sleep 120; play $home/music/sample/beep.mp3

set of alarm at 17:10 o'clock

; while(! ~ `{date | awk '{ print $4 }'} 17:10*)

 sleep 60; play $home/music/alarm.mp3

Math, Graphs and Units

There are three calculators available in Plan 9: bc, hoc and dc. All of these have

more or less the same capabilities, and the old UNIX warhorse bc is probably the

one you will be most familiar with (run bc -l to use floating point math).

The units command is helpful for converting different units, such as meter to feet

or kilogram to pound (it has some limitations though). As for graphs, one option is

to use graph. Suppose you have the following stock exchange printout:

98

99

102 "102"

100

97 "97"

The command graph -y 80 120 -a < stocks | plot will draw a graph, with the y

axis set to vary between 80 and 120, and the x axis set to increment automatically.

The lowest and highest points in the graph are also labeled with "97" and "102". Of

course you can make much more complicated graphs, suppose you had three col‐

umns of numbers in the database, one for each company you have invested in (each

optionally tagged with a label). You can then run the command graph -y 80 120

-a -o 3 -p rgb < stocks | plot, to produce a graph of the three companies each

with its own color (red, green and blue).

With all its capabilities, the graph program has a fatal flaw: It's clumsy to incorpo‐

rate its graphs into documents. A more elegant graph tool for troff documents is

grap. It has much the same capabilities as graph but uses a slightly different syn‐

tax. To add the stock exchange graph from above in a troff document you could

write it as follows:

.G1

98

99

102

100

97

.G2

And you could view the graph by running the command grap stock.ms | pic |

troff | page. Of course if you have a graph of three companies, each with its own

style and label, things would become more complicated. Supposing the plot data is

in a file called stocks, and looks like this:

1 98 67 88

2 99 69 84

3 102 76 81

4 100 82 77

5 97 84 78

You could write the grap graph like so:

.G1

frame invis ht 2 wid 4 left solid bot solid

label left "CompA" left .5 up .7

label left "CompC" left .5

label left "CompB" left .5 down .7

draw compa solid

draw compb dotted

draw compc dashed

copy "stocks" thru X

 next compa at $1,$2

 next compb at $1,$3

 next compc at $1,$4

X

.G2

Like the other troff preprocessors, such as tbl, pic and eqn, it takes a bit of effort

to learn the mini-language. But once you get used to the semantics, it's easy

enough to add fairly advanced tables, pictographics, math expressions and graphs

to your troff documents.

Spreadsheets

You do not have a nice pointy-clicky GUI spreadsheet in Plan 9, but it's not too

hard to replicate the basic functionality. Let's assume you have a habit of doing

your personal accounting in LibreOffice, and a typical fiscal year looks something

like the following screenshot:

The crucial step in replicating such a report in Plan 9 is to separate data from pre‐

sentation. For instance, lets write the variable account data in a fixed field data‐

base like so:

Groceries 345 353 321 398 373 362

Health 134 0 0 123 0 142

Transport 262 268 273 352 263 272

Cloths 0 150 0 0 175 225

Other 363 473 481 403 428 393

With this database in place it's fairly easy to generate the above spreadsheet. For

example, the following awk script will print an ASCII report similar to our

LibreOffice screenshot:

; cat account

#!/bin/rc

account - print an account report

usage: account database

bugs: requires a very specific input file

date=`{date}

awk <$1 '

BEGIN {

 # set some fixed income/expense values

 income=3000; rent=1000; lone=250; savings=500; fixed=1750

 # print header and fixed monthly values

 printf("%10s%6s%6s%6s%6s%6s%6s\n",

 "", "Jan", "Feb", "Mar", "Apr", "May", "Jun")

 prfixed("Income", income)

 print ""

 prfixed("Rent", rent)

 prfixed("Lone", lone)

 prfixed("Savings", savings)

 prfixed("FIXED", fixed)

 print ""

}

{

 # print each line in the db and save their values

 prline($1, $2, $3, $4, $5, $6, $7)

 jan+=$2; feb+=$3; mar+=$4; apr+=$5; may+=$6; jun+=$7

}

END {

 # print summary of expenses

 prline("VARIABLE", jan, feb, mar, apr, may, jun)

 print ""

 prline("Expenses", jan+fixed, feb+fixed, mar+fixed,

 apr+fixed, may+fixed, jun+fixed)

 prline("BALANCE",

 income-fixed-jan, income-fixed-feb, income-fixed-mar,

 income-fixed-apr, income-fixed-may, income-fixed-jun)

 print ""

 # print current year and annual balance

 split("'$"date'", date)

 printf("%10s %d\n", "Year", date[6])

 printf("%10s %d\n", "SUM",

 (income*6)-((fixed*6)+jan+feb+mar+apr+may+jun))

}

a couple of wrapper functions for printf

function prline(tag, jan, feb, mar, apr, may, jun){

 printf("%-10s%6d%6d%6d%6d%6d%6d\n",

 tag, jan, feb, mar, apr, may, jun)

}

function prfixed(tag, n){

 printf("%-10s", tag)

 for (i=1; i<=6; i=i+1)

 printf("%6d", n)

 printf("\n")

}

'

; account database

 Jan Feb Mar Apr May Jun

Income 3000 3000 3000 3000 3000 3000

Rent 1000 1000 1000 1000 1000 1000

Lone 250 250 250 250 250 250

Savings 500 500 500 500 500 500

FIXED 1750 1750 1750 1750 1750 1750

Groceries 345 353 321 398 373 362

Health 134 0 0 123 0 142

Transport 262 268 273 352 263 272

Cloths 0 150 0 0 175 225

Other 363 473 481 403 428 393

VARIABLE 1104 1244 1075 1276 1239 1394

Expenses 2854 2994 2825 3026 2989 3144

BALANCE 146 6 175 -26 11 -144

 Year 2021

 SUM 168

If you are unfamiliar with awk, I am sure the above example looks quite terrifying.

Settle down, brew a cup of coffee, and read the script slowly, line by line. The logic

is fairly straight forward, and most of the tedium here has to do with formatting.

For example printf("%-10s%6d%6d%6d%6d%6d%6d\n"...) doesn't look pretty, but it

makes sure that the fields are printed out nicely (print a line consisting of a 10

character wide string, followed by six 6 character wide digits followed by a new‐

line).

Now it's all well and good to print ASCII tables for our own personal accounting,

but lets assume we need to incorporate such a report in a business document.

ASCII tables went out of fashion in the early 90's, so we definitely need something

more professional to show to our boss. Don't panic, tbl(1) has your back! Consider

the following example:

; cat << eof > table

.TS

expand center allbox;

l l l l l l l

l n n n n n n.

eof

; account database | sed 's/[]+/ /g' >> table

; echo .TE >> table

; tbl table | troff | page

https://pspodcasting.net/dan/blog/2019/images/table.png
https://pspodcasting.net/dan/blog/2019/images/table.png

Let's take a step back and explain what is going on here. The tbl(1) program ex‐

pects tab separated input fields, so we use sed to convert our spaces to tabs.

Beyond that our tbl table must start with ".TS" and end with ".TE", and we need

a short header that describes what our table should look like. expand, center and

allbox control various visual aspects of the table, the next two lines state that the

first row consists of seven left justified text fields, and that all following rows after

that consist of a left justified text field and six numerical fields. Look up the tbl(1)

manpage for more information, you can do a lot of cool stuff with it. To incorpo‐

rate our table in an ms (ei. troff) document, just run cat table >> document.ms.

At first glance, our examples look very tedious, but they are actually not much

harder to work with then our LibreOffice example. The above spreadsheet in

LibreOffice consists of 550 characters. Some of these fields contain code, for exam‐

ple a field that reads "1104", may actually be typed "=SUM(B12:B17)". Compare

that to awk's "jan+=$2". In addition to typing in these characters, we also need to

use at least 101 mouse or keyboard actions to manipulate the table, making a total

of 651+ actions.

Our awk program is 982 characters, excluding comments and whitespace, and our

database 118, making a total of 1100 input actions. So our awk table requires

initially 50% more work to write then our LibreOffice table. However, once our awk

program is written, we only need to update the database when we do our

accounting, and that is five times less work then our LibreOffice spreadsheet. In

addition we can freely change our awk code without effecting the data, we can also

https://pspodcasting.net/dan/blog/2019/images/table.png
https://pspodcasting.net/dan/blog/2019/images/table.png

use our data with other programs, we can feed it to graph or a database for

instance. The flexibility of our awk approach, not to mention computational

efficiency, is far superior! Proactive laziness is understandably scary for the novice,

but with experience one tends to embrace its wisdom.

But lets consider one more problem: Writing a custom tbl file just to quickly view

our data as a troff table is tedious, can we automate this? Sure. Lets write a

script called table that automatically writes a tbl table for the file it is given and

open it in page:

#!/bin/rc

table - convert database to a tbl(1) spreadsheet

usage: table file

bugs: only supports a simple generic spreadsheet

set some defaults

rfork ne

tmp=/tmp/ttbl-$pid

mkdir -p $tmp

fn sigexit{ rm -rf $tmp }

workaround: tbl can only handle one page (56 lines) at a time

pages=`{echo `{cat $1 | wc -l} / 56 | hoc}

if(~ $pages [0-9]*.[0-9]*){

 pages=`{echo $pages | sed 's/\.*//'}

 pages=`{echo $pages + 1 | hoc}

}

s=1

e=56

for(p in `{seq $pages}){

 p=`{echo 00$p | sed 's/.*(...$)/\1/'}

 sed -n $s,$e^p $1 > tmp/pp

 s=`{echo $s + 56 | hoc}

 e=`{echo $e + 56 | hoc}

}

generate tbl for each 56 line segment

for(file in $tmp/p*){

 tbl=$file.tbl

 echo .TS > $tbl

 echo 'expand center allbox;' >> $tbl

 # create tbl header (header and content lines)

 for(word in `{sed 1q $1 | sed 's/[]+/_/g'}){

 if (echo $word | grep -s '^[0-9.-]+$') echo -n 'n '

 if not echo -n 'l '

 } >> $tbl

 echo >> $tbl

 for (word in `{sed -n 2p $1 | sed 's/[]+/_/g'}){

 if (echo $word | grep -s '^[0-9.-]+$') echo -n 'n '

 if not echo -n 'l '

 } >> $tbl

 echo . >> $tbl

 cat $file >> $tbl

 echo .TE >> $tbl

}

compile all segments and print out

for (file in $tmp/p*.tbl){ tbl $file | troff >> $tmp/all }

page $tmp/all

exit # force clean up

One complication here is that tbl does not handle tables that overflow the page, so

we need to split very large tables into smaller chunks. And of course our script

cannot magically produce a perfect table for any and all input. First of all it just

scans the first two lines to find out what type of fields it should print, left justified

text or numbers, it assumes that all following lines have the same fields as the 2nd

line. Lastly our input file must be a tab separated database, if it isn't we need to

transform it first (eg. sed 's/,/ /g' db.csv > db.tab; table db.tab).

Databases

"Database" is another one of those IT buzzwords, that make really simple things

sound amazingly complex. Consider this text file:

Asia Japan 120 144

Asia India 746 1267

Asia China 1032 3705

Asia USSR 275 8649

Europe Germany 61 96

Europe England 56 94

Europe France 55 211

North America Mexico 78 762

North America USA 237 3615

North America Canada 25 3852

South America Brazil 134 3286

Lo, and behold, it's a database! A database is a list of values, nothing more. The

above table is a database of countries, listing continent, name, population and

area. We can easily retrieve values from our database with awk, for instance:

; echo Asias population is `{awk -F' ' '

 /Asia/ { sum += $3 } END { print sum }' countries}

Asias population is 2173

; echo Germanys population density is `{awk -F' ' '

 /Germany/ { print ($3*1000)/$4 }' countries}

Germanys population density is 635.417

Naturally these numbers are quite bogus, since my database is incomplete, and a

bit outdated, but I trust you get the point. Of course when people speak of data‐

bases, they often think of relational databases. That is tables of values that are re‐

lated with each other through common key values. For example, suppose we aug‐

ment our countries database with a capital database:

Brazil Brasilia

Canada Ottawa

China Beijing

England London

France Paris

Germany Bonn

India New Delhi

Japan Tokyo

Mexico Mexico City

USA Washington

USSR Moscow

These two databases are related with each other through the common country

names, the second field in our countries database, and the first in our capitals

database. Lets merge them:

; sort -t' ' -k 2 countries > tmp_countries

; sort -t' ' capitals > tmp_capitals

; join -t' ' -1 2 tmp_countries tmp_capitals

Brazil South America 134 3286 Brasilia

Canada North America 25 3852 Ottawa

China Asia 1032 3705 Beijing

England Europe 56 94 London

France Europe 55 211 Paris

Germany Europe 61 96 Bonn

India Asia 746 1267 New Delhi

Japan Asia 120 144 Tokyo

Mexico North America 78 762 Mexico City

USA North America 237 3615 Washington

USSR Asia 275 8649 Moscow

You will note one complication here. Our sort and join commands have the flag

-t' ' (-F' ' for awk), that is -t followed by a Tab character surrounded by single

quotes. This is because our databases are tab separated values, this allows us to

have fields containing spaces, such as "North America". Without the -t' ' flag, this

would be interpreted as two fields rather then one. Of course we can use the same

approach to work with comma separated values, just change the flag to -t,.

If you try this out yourself, you will see that we have actually cheated a bit in our

examples. Tab separated databases do not align perfectly, they actually look more

like this:

Asia Japan 120 144

Asia India 746 1267

Asia China 1032 3705

Asia USSR 275 8649

Europe Germany 61 96

Europe England 56 94

Europe France 55 211

North America Mexico 78 762

North America USA 237 3615

North America Canada 25 3852

South America Brazil 134 3286

In UNIX it is easy to pretty print such text, just run join -t' ' -1 2 tmp_coun‐

tries tmp_capitals | column -t. Plan 9 however does not have the column com‐

mand. The closest equivalent, mc, does not have this auto align feature. But it's

not too hard to write an awk script that does the same, here is one example:

PS: This script will replace tabs, so don't overwrite your tab separated databases

with it! Use it for pretty printing only.

#!/bin/rc

column - auto align column output

usage: column < input > output

cat /fd/0 | awk '

BEGIN {

 FS = "\t"; blanks = sprintf("%100s", " ")

 number = "^[+-]?([0-9\]+[.]?[0-9\]*|[.][0-9\]+)$"

}

{ row[NR] = $0

 for (i = 1; i <= NF; i++){

 if ($i ~ number)

 nwid[i] = max(nwid[i], length($i))

 wid[i] = max(wid[i], length($i))

 }

}

END {

 for (r = 1; r <= NR; r++){

 n = split(row[r], d)

 for (i = 1; i <= n; i++){

 sep = (i < n) ? " " : "\n"

 if (d[i] ~ number)

 printf("%" wid[i] "s%s", numjust(i, d[i]), sep)

 else

 printf("%-" wid[i] "s%s", d[i], sep)

 }

 }

}

function max(x, y){ return (x > y) ? x : y }

function numjust(n, s) { # position s in field n

 return s substr(blanks, 1, int((wid[n]-nwid[n])/2))

}'

Awk as a Database

OK, so we can merge our relational databases, but this is still a lot of tedious

work. Can we automate this process? And besides, it's not so intuitive to write awk

'/Germany/ { print ($3*1000)/$4 }', could we possible write awk '$country ==

"Germany" { print ($population*1000)/$area }'? Yes. The following script allows

awk to query a relational database. It only requires you to write a relfile first,

that describe what attributes are where. The relfile must also contain a table

with all available attributes. If such a file does not exist, it must be created, and

the instructions for doing so must be provided in the relfile.

; cat relfile

countries:

 continent

 country

 population

 area

capitals:

 country

 capital

cc:

 country

 population

 area

 capital

 continent

 !sort -t' ' -k 2 countries > tmp_countries

 !sort -t' ' capitals > tmp_capitals

 !join -t' ' -1 2 tmp_countries tmp_capitals > cc

 !rm tmp_* cc

; cat q

#!/bin/rc

q - awk relational database query

usage: q query

depend: relfile

echo $* | awk '

BEGIN { readrel("relfile") }

/./ { doquery($0) }

parse relfile

function readrel(f) {

 while (getline <f > 0)

 if ($0 ~ /^[A-Za-z]+ *:/) {

 gsub(/[^A-Za-z]+/, "", $0)

 relname[++nrel] = $0

 } else if ($0 ~ /^[\t]*!/)

 cmd[nrel, ++ncmd[nrel]] = substr($0,index($0,"!")+1)

 else if ($0 ~ /^[\t]*[A-Za-z]+[\t]*$/) # attribute

 attr[nrel, $1] = ++nattr[nrel]

 else if ($0 !~ /^[\t]*$/)

 print "bad line in relfile:", $0

}

translate qawk query into corresponding awk query

function doquery(s, i,j) {

 for (i in qattr)

 delete qattr[i]

 query = s

 while (match(s, /\$[A-Za-z]+/)) {

 qattr[substr(s, RSTART+1, RLENGTH-1)] = 1

 s = substr(s, RSTART+RLENGTH+1)

 }

 for (i = 1; i <= nrel && !subset(qattr, attr, i);)

 i++

 if (i > nrel)

 missing(qattr)

 else {

 for (j in qattr)

 gsub("\\$" j, "$" attr[i,j], query)

 for (j = 1; j <= ncmd[i]; j++) # create table i

 if (system(cmd[i, j]) != 0) {

 print "command failed, query skipped\n", cmd[i,j]

 return

 }

 awkcmd = sprintf("awk -F''\t'' ''%s'' %s", query,

relname[i])

 #printf("query: %s\n", awkcmd) # for debugging

 system(awkcmd)

 }

}

function subset(q, a, r, i) { # is q a subset of a[r]?

 for (i in q)

 if (!((r,i) in a))

 return 0

 return 1

}

function missing(x, i) {

 print "no table contains all of the following attributes:"

 for (i in x)

 print i

}'

; q '$country == "Germany" { print ($population*1000)/$area }'

635.417

; q '{ printf("%-10s %4.2f\n", $country, ($population*1000)/$area)

}'

Japan 833.33

India 588.79

China 278.54

USSR 31.80

Germany 635.42

England 595.74

France 260.66

Mexico 102.36

USA 65.56

Canada 6.49

Brazil 40.78

Our little q command will likely not topple Oracle anytime soon, but for personal

use awk is both flexible and efficient. By the way both this section, and the above

spreadsheet section is greatly plagiarized from influenced by chapter 4 in The Awk

Programming Language, by Aho, Kernighan and Weinberger. I highly recommend

this book for your own personal library, whether you use Plan 9, UNIX or flippin

DOS.

Ndb as a Database

Using awk for databases is fine, but it's a very UNIX'y way of doing things. Plan 9

actually has a really good, and super fast, database called ndb (network database).

You have probably already used ndb to set up your network configuration file

/lib/ndb/local, and it's for this purpose ndb was created. But it is actually a fully

functional generic database, with all the trimmings. Here is how we can implement

the above country database in ndb:

; cat countries.db

country=Japan

 continent=Asia

 population=120

 area=144

 capitol=Tokyo

country=France

 continent=Europe

 population=55

 area=211

 capitol=Paris

country=Mexico

 continent="North America"

 population=78

 area=762

 capitol="Mexico City"

...

; population=`{ndb/query -f countries.db country Germany

population}

; area=`{ndb/query -f countries.db country Germany area}

; echo Germanys population density is `{echo

'('$population'*1000)/'$area'' | hoc}

Germanys population density is 635.416666667

; ndb/query -f countries.db continent Asia

country=Japan continent=Asia population=120 area=144

country=India continent=Asia population=746 area=1267

country=China continent=Asia population=1032 area=3705

country=USSR continent=Asia population=275 area=8649

; ndb/query -a -f countries.db continent Asia population |

 awk '{ sum+=$1 } END { print "Asias population is", sum }'

Asias population is 2173

ndb entries are very free form, we can write them in one line, as in country=Japan

continent=Asia population=120..., in multiple lines indented by spaces or tabs, or

a combination of both. The empty newline that separate the entries above is not

required, it's just added for the sake of readability. Note the -a flag in our last ndb

example, without this ndb would return 120, the population of the first entry in

continent Asia. ndb can handle multiple database files, and make attribute hashes

to speed things up. See ndb(8) for the full details.

Conclusion

The primary value of Plan 9 lies in its simplicity. Making a hard copy of its docu‐

mentation will not break your bookshelf, and the source code is actually readable.

This cannot be said for main stream operating systems. Of course being such a

simple system, there are many many features that popular operating systems pro‐

vide, that Plan 9 don't. If you plan on using this alternative OS as a daily driver,

you really have to pull up your sleeves, learn some shell, maybe even some C, and

write a bunch of utilities to do your work. But it's a fascinating learning experi‐

ence.

Hopefully, this article has also demonstrated that Plan 9 does not suck quite so

badly as you may have thought. I know I was positively surprised a few times as I

was writing it! Thanks to the good work of the 9front developers, you can run

Plan 9 on modern hardware. Most of the laptops I have tried it on have just

worked, including essential things like audio and wifi. As we have seen, you can do

office work, play games and audio, work with images and the web. And with the

recent additions of a decent music player, video player and web browser, 9front is

actually starting to look pretty good even as a casual desktop. Of course the real

charm of Plan 9 has always been in its simple and consistent design, which gives

the user tremendous power with modest efforts. Using it will likely open your mind

to the power of UNIX, much more so in fact, then UNIX itself will. Happy hacking

:)

